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MINIMUM CYCLE AND HOMOLOGY BASES OF SURFACE-EMBEDDED
GRAPHS∗

Glencora Borradaile,† Erin Wolf Chambers,‡ Kyle Fox,§ and Amir Nayyeri†

Abstract. We study the problems of finding a minimum cycle basis (a minimum-weight
set of cycles that form a basis for the cycle space) and a minimum homology basis (a
minimum-weight set of cycles that generates the 1-dimensional (Z2)-homology classes) of
an undirected graph cellularly embedded on a surface. The problems are closely related,
because the minimum cycle basis of a graph contains its minimum homology basis, and the
minimum homology basis of the 1-skeleton of any graph is exactly its minimum cycle basis.

For the minimum cycle basis problem, we give a deterministic O(nω+22gn2+m)-time
algorithm for graphs cellularly embedded on an orientable surface of genus g. Prior to this
work, the best known algorithms for surface-embedded graphs were those for general graphs:
an O(mω)-time Monte Carlo algorithm [2] and a deterministic O(nm2/ log n + n2m)-time
algorithm [31].

For the minimum homology basis problem, we give a deterministic O((g+b)3n log n+
m)-time algorithm for graphs cellularly embedded on an orientable or non-orientable surface
of genus g with b boundary components, improving on existing algorithms for many values
of g and n. The algorithm assumes that shortest paths are unique; this assumption can
be avoided by either using random perturbations of the edge weights guaranteeing a high
probability of success or by deterministic means at a cost of an O(log n) factor increase in
running time.

1 Introduction

1.1 Minimum cycle basis

Let G = (V,E) be a connected undirected graph with n vertices and m edges. We define
a cycle of G to be a subset E′ ⊆ E where each vertex v ∈ V is incident to an even
number of edges in E′. The cycle space of G is the vector space over cycles in G where
addition is defined as the symmetric difference of cycles’ edge sets. It is well known that the
cycle space of G is isomorphic to Zm−n+1

2 ; in particular, the cycle space can be generated
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by the fundamental cycles of any spanning tree of G. A cycle basis is a maximal set of
independent cycles. A minimum cycle basis is a cycle basis with a minimum number of
edges (counted with multiplicity) or minimum total weight if edges are weighted1. Minimum
cycle bases have applications in many areas such as electrical circuit theory [10,28], structural
engineering [9], surface reconstruction [35], and the analysis of algorithms [30].

Sets of independent cycles form a matroid, so the minimum cycle basis can be com-
puted using the standard greedy algorithm. However, there may be an exponential number
of cycles in G from which to choose. Horton [25] gave the first polynomial time algorithm
for the problem by observing that every cycle in the minimum cycle basis is the funda-
mental cycle of a shortest path tree, reducing the number of cycles to consider to O(nm).
Several other algorithms have been proposed to compute minimum cycle bases in general
graphs [2, 3, 12, 20, 27, 31]. The fastest of these algorithms are an O(mω)-time Monte Carlo
randomized algorithm of Amaldi et al. [2] and an O(nm2/ log n + n2m)-time deterministic
algorithm of Mehlhorn and Michail [31]. Here, O(mω) is the time it takes to multiply two
m×m matrices using fast matrix multiplication.

For the special case of planar graphs, faster algorithms are known. Hartvigsen and
Mardon [23] observed that the cycles in the minimum cycle basis nest, and so can be rep-
resented by a tree; in fact, the edges of each cycle span an s, t-minimum cut between two
vertices in the dual graph, and the Gomory-Hu tree [21] of the dual graph is precisely the
tree of minimum cycle basis in the primal. Hartvigsen and Mardon [23] gave an O(n2 log n)-
time algorithm for the minimum cycle basis problem in planar graphs, and Amaldi et al. [2]
improved their running time to O(n2). Borradaile, Sankowski, and Wulff-Nilsen [4] showed
how to compute an oracle for the minimum cycle basis and dual minimum cuts in O(n log4 n)
time that is able to report individual cycles or cuts in time proportional to their size. Bor-
radaile et al. [6] recently generalized the minimum cut oracle to graphs embeddable on an
orientable surface of genus g. Their oracle takes 2O(g2)n log3 n time to construct (improving
upon the original planar oracle by a factor of log n). Unfortunately, their oracle does not
help in finding the minimum cycle basis in higher genus graphs, because there is no longer
a bijection between cuts in the dual graph and cycles in the primal graph.

That said, it is not surprising that the cycle basis oracle has not been generalized
beyond the plane. While cuts in the dual continue to nest in higher genus surfaces, cycles do
not. In fact, the minimum cycle basis of a toroidal graph must always contain at least one
pair of crossing cycles, because any cycle basis must contain cycles which are topologically
distinct. These cycles must represent different homology classes of the surface.

1.2 Minimum homology basis

Given a graph G embedded in a surface Σ of genus g with b boundary components, the
homology of G is an algebraic description of the topology of Σ and of G’s embedding. In
this paper, we focus on one-dimensional cellular homology over the finite field Z2. Homology
of this type allows for simplified definitions. We say a cycle η is null-homologous if η is the

1There is a notion of minimum cycle bases in directed graphs as well, but we focus on the undirected
case in this paper.
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Figure 1. Two homologous cycles, one shown in red and the other in blue.

boundary of a subset of faces. Two cycles η and η′ are homologous or in the same homology
class if their symmetric difference η ⊕ η′ is null-homologous. Let β = g + max {b− 1, 0}
if Σ is non-orientable (contains a subset homeomorphic to the Möbius band), and let β =

2g + max {b− 1, 0} otherwise. The homology classes form a vector space isomorphic to Zβ2
known as the homology space . A homology basis of G is a set of β cycles in linearly
independent homology classes, and the minimum homology basis of G is the homology
basis with either the minimum number of edges or with minimum total weight if edges of G
are weighted. Note that the cycle basis of an embedded graph is the homology basis of the
same graph embedded on the same surface with the interior of all faces removed.

Erickson and Whittlesey [18] described an O(n2 log n + gn2 + g3n)-time algorithm
for computing the minimum homology basis for orientable Σ without boundary. Like Hor-
ton [25], they apply the greedy matroid basis algorithm to a set of O(n2) candidate cycles.
Alternatively, a set of 2β candidate cycles containing the minimum homology basis can be
computed easily by applying the algorithms of Italiano et al. [26] or Erickson and Nayyeri [17]
for computing the minimum homologous cycle in any specified homology class. These algo-
rithms take gO(g)n log logn and 2O(g)n log n time respectively. All three results mentioned
above can be extended to surfaces with boundary (although Erickson and Whittlesey [18]
do not explicitly state this). Similarly, the algorithms of Erickson and Whittlesey [18] and
Erickson and Nayyeri [17] can compute the minimum homology basis for graphs embedded
on non-orientable surfaces, although their paper only discusses orientable surfaces explic-
itly. Dey, Sun, and Wang [13] generalized the results above to arbitrary simplicial com-
plexes, and Busaryev et al. [7] improved the running time of their generalization from O(n4)
to O(nω + n2gω−1). Note that all of the algorithms above either take quadratic time in n
(or worse) or they have exponential dependency on g. In contrast, it is well understood
how to find a single cycle of the minimum homology basis of G in only O(g2n log n) time
assuming orientable Σ, because the minimum-weight non-separating cycle will always be in
the basis [8, 16].

1.3 Our results

We describe new algorithms for computing the minimum cycle basis and minimum homol-
ogy basis of a cellularly surface-embedded graph G. Our algorithm for minimum cycle
basis requires G be embedded on an orientable surface, but it is deterministic and runs
in O(nω + 22gn2 + m) time, matching the running time of the randomized algorithm of
Amaldi et al. [2] when g is sufficiently small. Our algorithm for minimum homology ba-
sis works for orientable or non-orientable surfaces, is also deterministic, and it runs in
O((g+ b)3n log n+m) time, assuming shortest paths are unique. The assumption of unique
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shortest paths is only necessary to use the multiple-source shortest path data structure
of Cabello, Chambers, and Erickson [8]. This assumption can be avoided by either using
random perturbations of the edge weights guaranteeing a high probability of success or by
deterministic means at a cost of an O(log n) factor increase in running time [8]. For sim-
plicity, we will assume shortest paths are unique during the presentation of our minimum
homology basis algorithm. In any case, this is the first algorithm for minimum homology
basis that has a running time simultaneously near-linear in n and polynomial in g.

At a high level, both of our algorithms are based on the O(nm2 + n2m log n)-time
algorithm of Kavitha et al. [27] who in turn use an idea of de Pina [12]. We compute our
basis cycles one by one. Over the course of the algorithm, we maintain a set of support
vectors that form the basis of the subspace that is orthogonal to the set of cycles we have
already computed. Every time we compute a new cycle, we find one of minimum weight
that is not orthogonal to a chosen support vector S, and then update the remaining support
vectors so they remain orthogonal to our now larger set of cycles. Using the divide-and-
conquer approach of Kavitha et al. [27], we are able to maintain these support vectors in
only O(nω) time total in our minimum cycle basis algorithm and O(gω) time total in our
minimum homology basis algorithm. Our approaches for picking the minimum-weight cycle
not orthogonal to S form the more technically interesting parts of our algorithms and are
unique to this work.

For our minimum cycle basis algorithm, we compute a collection of O(22gn) cycles
that contain the minimum cycle basis and then partition these cycles according to their
homology classes. The cycles within a single homology class nest in a similar fashion to the
minimum cycle basis cycles of a planar graph. Every time we compute a new cycle for our
minimum cycle basis, we walk up the 22g trees of nested cycles and find the minimum-weight
cycle not orthogonal to S in O(n) time per tree. Overall, we spend O(22gn2) time finding
these cycles; if any improvement is made on the time it takes to update the support vectors,
then the running time of our algorithm as a whole will improve as well.

Our minimum homology basis algorithm uses a covering space called the cyclic double
cover. As shown by Erickson [16], the cyclic double cover provides a convenient way to find a
minimum-weight closed walk γ crossing an arbitrary non-separating cycle λ an odd number
of times. We extend his construction so that we may consider not just one λ but any
arbitrarily large collection of cycles. Every time we compute a new cycle in our minimum
homology basis algorithm, we let S determine a set of cycles that must be crossed an odd
number of times, build the cyclic double cover for that set, and then compute our homology
basis cycle in O((g + b)gn log n) time by computing minimum-weight paths in the covering
space2.

The rest of the paper is organized as follows. We provide more preliminary material
on surface-embedded graphs in Section 2. In Section 3, we describe a characterization of
cycles and homology classes using binary vectors. These vectors are helpful in formally

2In addition to the above results, we note that it is possible to improve the gO(g)n log log n-time algorithm
for minimum homology basis based on Italiano et al. [26] so that it runs in 2O(g)n log logn time. However,
this improvement is a trivial adaption of techniques used by Fox [19] to get a 2O(g)n log log n-time algorithm
for minimum-weight non-separating and non-contractible cycle in undirected graphs. We will not further
discuss this improvement in our paper.
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defining our support vectors. We give a high level overview of our minimum cycle basis
algorithm in Section 4 and describe how to pick individual cycles in Section 5. Finally, we
give our minimum homology basis algorithm in Section 6.

2 Preliminaries

We begin with an overview of graph embeddings on surfaces. For more background, we
refer readers to books and surveys on topology [24,33], computational topology [14,37], and
graphs on surfaces [11,32].

A surface or 2-manifold with boundary Σ is a compact Hausdorff space in which
every point lies in an open neighborhood homeomorphic to the Euclidean plane or the closed
half plane. The boundary of the surface is the set of all points whose open neighborhoods
are homeomorphic to the closed half plane. Every boundary component is homeomorphic
to the circle. A cycle in the surface Σ is a continuous function γ : S1 → Σ, where S1 is
the unit circle. A cycle γ is called simple if γ is injective. A path p in surface Σ is a
continuous function p : [0, 1]→ Σ; again, p is simple if p is injective. A loop is a path p such
that p(0) = p(1); equivalently, it is a cycle with a designated basepoint. The genus of the
surface Σ, denoted by g, is the maximum number of disjoint simple cycles γ1, . . . , γg in Σ
such that Σ\(γ1∪· · ·∪γg) is connected. A surface Σ is non-orientable if it contains a subset
homeomorphic to the Möbius band; otherwise, it is orientable . A surface is characterized
up to homeomorphism by its genus, number of boundary components, and whether or not
it is orientable.

The embedding of graph G = (V,E) is a drawing of G on Σ which maps vertices
to distinct points on Σ and edges to internally disjoint simple paths whose endpoints lie on
their incident vertices’ points. A face of the embedding is a maximally connected subset
of Σ that does not intersect the image of G. An embedding is cellular if every face is
homeomorphic to an open disc; in particular, every boundary component must be covered
by (the image of) a cycle in G. These boundary cycles must be vertex-disjoint. We consider
only cellular embeddings in this paper. Such embeddings can be described combinatorially
using a rotation system and a signature. The rotation system describes the cyclic ordering
of edges around each vertex. The orientation signature sig : E → {0, 1} is a function
that assigns to each edge e a bit. Value sig(e) = 0 if the cyclic ordering of e’s endpoints are
in the same direction; otherwise, sig(e) = 1. Abusing notation, we denote the orientation
signature of a cycle η (in G) as sig(η) and define it as the exclusive-or of its edges’ orientation
signatures. If sig(η) = 1, we say η is one-sided . Otherwise, we say that η is two-sided .
Surface Σ is orientable if and only if every cycle of G is two-sided.

Let F be the set of faces in G. Let n, m, `, and b be the number of vertices, edges,
faces, and boundary components of G’s embedding respectively. The Euler characteris-
tic χ of Σ is 2 − 2g − b if Σ is orientable and is 2 − g − b otherwise. By Euler’s formula,
χ = n−m+ `. Embedded graphs can be dualized : G∗ is a graph embedded on the surface
obtained by attaching disks to every boundary component of Σ. There is a vertex in G∗ for
every face and boundary component in G and a face in G∗ for every vertex of G. We refer
to the dual vertices of boundary components as boundary dual vertices. Two vertices in
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G∗ are adjacent if the corresponding faces/boundary components are separated by an edge
in G. We generally do not distinguish between edges in the primal and dual graphs. We
assume Σ contains at least one boundary component as it does not affect the homology of Σ
to remove a face when there is no boundary to begin with. In particular, this assumptions
simplifies the definition of β as given in the introduction so β = g+b−1 if Σ is non-orientable
and β = 2g + b− 1 otherwise.

A spanning tree of the graphG is a subset of edges ofG which form a tree containing
every vertex. A spanning coforest is a subset of edges which form a forest in the dual
graph with exactly b components, each containing one dual boundary vertex. A tree-
coforest decomposition of G is a partition of G into 3 edge disjoint subsets, (T, L,C),
where T is a spanning tree of G, C is a spanning coforest, and L is the set of leftover edges
E \ (T ∪ C) [15, 17]. Euler’s formula implies |L| = β.

A w,w′-path p (in G) is an ordered sequence of edges {u1v1, u2v2, . . . , ukvk} where
w = u1, w′ = vk, and vi = ui+1 for all positive i < k; a closed path is a path which
starts and ends on the same vertex. A path is simple if it repeats no vertices (except
possibly the first and last). We sometimes use simple cycle to mean a simple closed path.
A path in the dual graph G∗ is referred to as a co-path and a cycle in G∗ is referred to
as a co-cycle . Simple paths and cycles in the dual are referred to as simple co-paths and
co-cycles respectively. Every member of the minimum cycle basis (and subsequently the
minimum homology basis) is a simple cycle [25]. We let σ(u, v) denote an arbitrary shortest
(minimum-weight) u, v-path in G. Let p[u, v] denote the subpath of p from u to v. Given a
u, v-path p and a v, w-path p′, let p ·p′ denote their concatenation. Two paths p and p′ cross
if their embeddings in Σ cannot be be made disjoint through infinitesimal perturbations;
more formally, they cross if there is a maximal (possibly trivial) common subpath p′′ of p
and p′ such that, upon contracting p′′ to a vertex v, two edges each of p and p′ alternate in
their embedded around v. Two closed paths cross if they have subpaths which cross.

Let γ be a closed path in G that does not cross itself. We define the operation of
cutting along γ and denote it G Qγ. The graph G Qγ is obtained by cutting along γ
in the drawing of G on the surface, creating two copies of γ. If sig(γ) = 0, then the two
copies of γ each form boundary components in the cut open surface. Otherwise, the two
copies of γ together form a single closed path that is the concatenation of γ to itself at both
ends; the single closed path forms a single boundary component. Likewise, given a simple
path σ in G, we obtain the graph G Qσ by cutting along σ, creating two interiorly disjoint
copies connected at their endpoints. The cut open surface has one new boundary component
bounded by the copies of σ.

Let F ′ be a collection of faces and boundary components. Let ∂F ′ denote the
boundary of F ′, the set of edges with exactly one incident face or boundary component
in F ′. We sometimes call F ′ a cut of G∗ and say ∂F ′ spans the cut. A co-path p with edge
uv ∈ ∂F ′ crosses the cut at uv.

Finally, let w and w′ be two bit-vectors of the same length. We let 〈w,w′〉 denote the
dot product of w and w′, defined by the exclusive-or of the products of their corresponding
bits.
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2.1 Sparsifying G

We assume g = O(n1−ε) for some constant ε > 0; otherwise, our algorithms offer no im-
provement over previously known results. Because boundary cycles are vertex-disjoint, we
also have b = O(n). We show below that we can assume without loss of generality that G
has O(n) edges and faces. Essentially, our technique is to remove faces of degree 1 or 2
without increasing the number of vertices; Euler’s formula immediately limits the number
of edges and faces in the modified graph to O(n). To that end, we need to remove parallel
edges and loops from G.

For the minimum cycle basis, we begin by computing all pairs of shortest paths
in O(n2 log n + m) time by ignoring all but the lightest edge in each set of parallel edges,
allowing Dijkstra’s algorithm to run in O(n log n) time per instantiation for n instantiations.
This computation is not required for the homology basis problem. We iteratively perform
the following procedure until every face has degree 3 or greater or our graph is one of a
constant number of easy cases. In each iteration, we add at most one cycle to the minimum
cycle basis or minimum homology basis. Let f be a face of degree 1 or 2. If f has degree 1,
then it is bounded by a null-homologous loop e in G. We add {e} to the minimum cycle
basis, because it is the cheapest cycle containing e, but we do not add it to the minimum
homology basis. If G consists entirely of e, we terminate; otherwise we remove e and f
from the graph and continue with the next iteration. If f has degree 2, then it is either
bounded by two distinct edges e and e′ or bounded twice by a single edge. In the latter
case, graph G must be the path of length 1 embedded in the sphere or it is a single vertex
and non-null homologous loop embedded in the projective plane (the non-orientable surface
of genus 1). If it is the path in the sphere, we add nothing to the minimum cycle basis
and minimum homology basis, and we terminate. If it is a loop in the projective plane, we
add it to both the minimum cycle basis and the minimum homology basis and terminate.
Now suppose f is bounded by distinct faces e and e′, and let e have less weight than e′

without loss of generality. Edge e′ belongs to cycle {e, e′}, so it belongs to some cycle of the
minimum cycle basis. Let σ be the shortest path between the endpoints of e′. We add σ · e′
to the minimum cycle basis. No other cycle in the minimum cycle basis contains e′, because
it would always be at least as cheap to include e in the cycle instead. Also, no cycle of
the minimum homology basis contains e′, because it would always be at least as cheap to
include e and {e, e′} itself is null-homologous. We remove e′ and f from the graph and
continue with the next iteration.

Each iteration is done in constant time, and there are at most m iterations of the
above algorithm. Therefore, the preprocessing procedure takes O(n2 log n + m) time total.
We assume for the rest of that paper that m = O(n) and ` = O(n).

3 Cycle and Homology Signatures

We begin the presentation of our algorithms by giving a characterization of cycles and
homology classes using binary vectors. These vectors will be useful in helping us determine
which cycles can be safely added to our minimum cycle and homology bases. Let (T, L,C)
be an arbitrary tree-coforest decomposition of G; set L contains exactly β edges e1, . . . , eβ .
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For each index i ∈ {1, . . . , β}, graph C ∪ {ei} contains a unique simple co-cycle or a unique
simple co-path between distinct dual boundary vertices. Let pi denote this simple co-cycle
or co-path. Let fβ+1, . . . , fm−n+1 denote the m−n+1−β = ` faces of G, and for each index
i ∈ {β + 1, . . . ,m− n+ 1}, let pi denote the simple co-path from fi to the dual boundary
vertex in fi’s component of C.

For each edge e in G, we define its cycle signature [e] as an (m−n+ 1)-bit vector
whose ith bit is equal to 1 if and only if e appears in pi. The cycle signature [η] of any
cycle η is the bitwise exclusive-or of the signatures of its edges. Equivalently, the ith bit
of [η] is 1 if and only if η and pi share an odd number of edges. Similarly, for each edge e
in G, we define its homology signature [e]h as a β-bit vector whose ith bit is equal to 1 if
and only if e appears in pi. The homology signature of cycles is defined similarly.

The following lemma is immediate.

Lemma 3.1. Let η and η′ be two cycles. We have [η ⊕ η′] = [η] ⊕ [η′] and [η ⊕ η′]h =
[η]h ⊕ [η′]h.

Let ζi denote the unique simple cycle in T ∪ {ei}. The following lemma helps us
explain the properties of cycle and homology signatures.

Lemma 3.2. The set of cycles {ζ1, . . . , ζβ} form a homology basis.

Proof: We prove that the cycles lie in independent homology classes by showing that the
symmetric difference of any non-empty subset of {ζ1, . . . , ζβ} is not null-homologous. Sup-
pose to the contrary that there exists a non-empty Υ ⊆ {ζ1, . . . , ζβ} such that

⊕
η∈Υ η = ∂F ′

for some subset of faces F ′ ⊆ F , where
⊕

is the symmetric difference of its operands.
Let ζi ∈ Υ be an arbitrary member of the subset. Co-path pi shares exactly one edge
with ζi, and it shares no edges with any other η ∈ Υ. In particular, pi crosses dual cut F ′ an
odd number of times. Therefore, pi cannot be a co-cycle. Further, pi cannot be a co-path
between two distinct dual boundary vertices, because exactly one of those two vertices would
have to lie inside F ′, a contradiction on F ′ only containing faces. We conclude Υ cannot
exist and the cycles {ζ1, . . . , ζβ} do lie in independent homology classes. �

Let w be an arbitrary (m− n+ 1)-bit vector. We construct a cycle ηw to demonstrate how
cycle and homology signatures provide a convenient way to distinguish between cycles and
their homology classes. Let Υ ⊆ {ζ1, . . . , ζβ} be the subset of basis cycles containing exactly
the cycles ζi such that the ith bit of w is equal to 1. Similarly, let F ′ ⊆ F be the subset of
faces such that face fi ∈ F ′ if and only the ith bit of w is equal to 1. Let ηw =

⊕
η∈(Υ∪{∂F ′}) η.

Lemma 3.3. We have [ηw] = w.

Proof: Let i ∈ {1, . . . ,m− n+ 1}, and let pi be the co-path as defined above. Suppose i ∈
{1, . . . , β}. Co-path pi crosses cut F ′ an even number of times. If bit i in w is set to 1, then
pi shares exactly one edge of

⊕
η∈Υ η by construction, and it must share an odd number of

http://jocg.org/


Journal of Computational Geometry jocg.org

edges with ηw as well. If bit i in w is set to 0, then pi shares no edges with
⊕

η∈Υ η, and it
must share an even number of edges with ηw.

Now, suppose i ∈ {β + 1, . . . ,m− n+ 1}. Co-path pi shares no edges with
⊕

η∈Υ η.
If i is set to 1, then fi ∈ F ′ and pi crosses cut F ′ an odd number of times. Therefore, it
shares an odd number of edges with ηw. If i is set to 0, then fi /∈ F ′, and pi crosses cut F ′
an even number of times, sharing an even number of edges with ηw. �

Corollary 3.4. Let η and η′ be two cycles. We have η = η′ if and only if [η] = [η′].

Observe that the homology class of ηw is entirely determined by the first β bits of w. We
immediately obtain an alternative (and more combinatorially inspired) proof of the following
corollary of Erickson and Nayyeri [17].

Corollary 3.5 (Erickson and Nayyeri [17, Corollary 3.3]). Two cycles η and η′ are
homologous if and only if [η]h = [η′]h.

Corollary 3.6. Cycle signatures are an isomorphism between the cycle space and Zm−n+1
2 ,

and homology signatures are an isomorphism between the first homology space and Z2g
2 .

4 Minimum Cycle Basis

We now describe our algorithm for computing a minimum cycle basis. We assume without
loss of generality that surface Σ contains exactly one boundary component, because the
addition or removal of boundary does not affect the cycles of G. We denote the one boundary
component and its corresponding dual boundary vertex as f∞, since we will use it in our
algorithm in a fashion analogous to the infinite face of a planar graph. Our algorithm
for minimum cycle basis is only for a graph G embedded on an orientable surface Σ. We
conclude β = 2g.

Our algorithm is based on one of Kavitha, Mehlhorn, Michail and Paluch [27] which
is in turn based on an algorithm of de Pina [12]. Our algorithm incrementally adds simple
cycles γ1, . . . , γm−n+1 to the minimum cycle basis. In order to do so, it maintains a set of
(m− n+ 1)-bit support vectors S1, . . . , Sm−n+1 with the following properties:

• The support vectors form a basis for Zm−n+1
2 .

• When the algorithm is about to compute the jth simple cycle γj for the minimum
cycle basis, 〈Sj , [γj′ ]〉 = 0 for all j′ < j.

Our algorithm chooses for each cycle γj the minimum-weight cycle γ such that 〈Sj , [γ]〉 = 1.
Note that Sj must have at least one bit set to 1, because the set of vectors S1, . . . , Sm−n+1

forms a basis. Therefore, such a γ does exist; in particular, we could choose [γ] to contain
exactly one bit equal to 1 which matches any 1-bit of Sj . The second property ensures that
the rank of {γ1, . . . , γj} is j; in particular, {γ1, . . . , γm−n+1} has rank m − n + 1 and is
therefore a basis. The correctness of choosing γj as above is guaranteed by the following
lemma.
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Lemma 4.1. Let S be an (m − n + 1)-bit vector with at least one bit set to 1, and let η
be the minimum-weight cycle such that 〈S, [η]〉 = 1. Then, η is a member of the minimum
cycle basis.

Proof: Let η1, . . . , η2m−n+1 be the collection of cycles ordered by increasing weight, and
choose j such that ηj = η. For any subset Υ of {η1, . . . , ηj−1}, we have 〈[

⊕
η′∈Υ η

′], S〉 = 0.
Therefore, η is independent of {η1, . . . , ηj−1}. It is well-known that sets of independent cycles
form a matroid. Further, the greedy algorithm of ordering a matroids’ elements by weight
and iteratively growing an independent set by adding the minimum-weight element keeping
the set independent is optimal for finding a minimum basis. Therefore, η is a member of
the minimum cycle basis. �

Our algorithm updates the support vectors and computes minimum cycle basis vec-
tors in a recursive manner. Initially, each support vector Si has only its ith bit set to 1.
Borrowing nomenclature from Kavitha et al. [27], we define two procedures, extend(j, k)
which extends the current set of basis cycles by adding k cycles starting with γj , and
update(j, k) which updates support vectors Sj+bk/2c, . . . , Sj+k−1 so that for any j′, j′′ with
j + bk/2c ≤ j′ < j + k and 1 ≤ j′′ < j + bk/2c, we have 〈Sj′ , [γj′′ ]〉 = 0. Our algorithm runs
extend(1,m− n+ 1) to compute the minimum cycle basis.

We implement extend(j, k) in the following manner: If k > 1, then our algorithm
recursively calls extend(j, bk/2c) to add bk/2c cycles to the partial minimum cycle basis. It
then calls update(j, k) so that support vectors Sj+bk/2c, . . . , Sj+k−1 become orthogonal to
the newly added cycles of the partial basis. Finally, it computes the remaining dk/2e basis
cycles by calling extend(j + bk/2c, dk/2e). If k = 1, then 〈Sj , [γj′ ]〉 = 0 for all j′ < j. Our
algorithm is ready to find basis cycle γj . We describe an O(22gn)-time procedure to find γj
in Section 5.

We now describe update(j, k) in more detail. Our algorithm updates each support
vector Sj′ where j + bk/2c ≤ j′ < j + k. The vector Sj′ becomes S′j′ = Sj′ + αj′,0Sj +
αj′,1Sj+1 + · · · + αj′,(bk/2c−1)Sj+bk/2c−1 for some set of scalar bits αj′,0 . . . αj′,(bk/2c−1). Af-
ter updating, the set of vectors S1, . . . , Sm−n+1 remains a basis for Zm−n+1

2 regardless
of the choices for the α bits. Note that extend(j, k) is only called after support vectors
Sj , . . . , Sj+k−1 are updated to be orthogonal to each minimum basis cycle γj′′ with j′′ < j.
Therefore, every linear combination of support vectors Sj , . . . , Sj+bk/2c is orthogonal to each
γj′′ with j′′ < j. In turn, we see 〈S′j′ , [γj′′ ]〉 = 0 for all j′′ < j for all choices of the α bits.

However, it is non-trivial to guarantee 〈S′j′ , [γj′′ ]〉 = 0 for all j′′ where j ≤ j′′ <

j + bk/2c. Let wT denote the transpose of a vector w. Let

X =

 Sj
· · ·

Sj+bk/2c−1

 · ([γj ]T · · · [γj+bk/2c−1]T
)

and

Y =

Sj+bk/2c· · ·
Sj+k−1

 · ([γj ]T · · · [γj+bk/2c−1]T
)
.
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LetA = Y X−1. Row j′−j−bk/2c+1 of matrixA contains exactly the bits αj′,0 . . . αj′,(bk/2c−1)

we are seeking [27, Section 4]. Matrices X, Y , and A can be computed in O(nkω−1)
time using fast matrix multiplication and inversion, implying that the new support vec-
tors S′j+bk/2c, . . . , S

′
j+k−1 can be computed in the same amount of time.

We can bound the running time of extend(j, k) using the following recurrence:

T (k) =

{
2T (k/2) +O(nkω−1) if k > 1

O(22gn) if k = 1

The total time spent in calls to extend(j, k) where k > 1 is O(nkω−1), assuming
ω > 2. The total time spent in calls to extend(j, 1) is O(22gnk). Therefore, T (k) =
O(nkω−1 + 22gnk). The running time of our minimum cycle basis algorithm (after sparsify-
ing G) is T (O(n)) = O(nω + 22gn2).

5 Selecting Cycles

A Horton cycle is a simple cycle given by a shortest x, u-path, a shortest x, v-path, and
the edge uv; in particular, the set of all Horton cycles is given by the set of m − n + 1
elementary cycles for each of the n shortest path trees [25]. Thus, in sparse graphs, there
are O(n2) Horton cycles. A simple cycle γ of a graph G is isometric if for every pair of
vertices x, y ∈ γ, γ contains a shortest x, y-path. Hartvigsen and Mardon prove that the
cycles of any minimum cycle basis are all isometric [23]. Therefore, it suffices for us to focus
on the set of isometric cycles to find the cycle γj as needed for Section 4. Amaldi et al. [2]
show how to extract the set of distinct isometric cycles from a set of Horton cycles in O(nm)
time. Each isometric cycle is identified by a shortest path tree’s root and a non-tree edge.

Here, we show that there are at most O(22gn) isometric cycles in our graph of genus
g (Section 5.1), and they can be partitioned into sets according to their homology classes.
We can represent the isometric cycles in a given homology class using a tree that can be
built in O(n2) time (Section 5.2). We then show that we can use these trees to find the
minimum-cost cycle γj as needed for Section 4 in linear time per homology class of isometric
cycles. We close with a discussion on how to improve the running time for computing and
representing isometric cycles (Section 5.4). We note that these improvements do not improve
the overall running time of our algorithm, since by maintaining separate representations of
the cycles according to their homology class, we require linear time per representation to
process the support vector with respect to which γj is non-orthogonal; we also require O(nω)
time to update the support vectors. However, they do further emphasize the bottleneck our
algorithm faces in updating and representing the support vectors.

5.1 Isometric cycles in orientable surfaces

Here we prove some additional structural properties that isometric cycles have in orientable
surface-embedded graphs. To this end, we herein assume that shortest paths are unique.
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Hartvigsen and Mardon show how to achieve this assumption algorithmically when, in par-
ticular, all pairs of shortest paths are computed, as we do [23]. We first prove a generalization
of the following lemma for the planar case by Borradaile, Sankowski and Wulff-Nilsen.

Lemma 5.1 (Borradaile et al. [4, Lemma 1.4]). Let G be a graph in which shortest
paths are unique. The intersection between an isometric cycle and a shortest path in G is
a (possibly empty) shortest path. The intersection between two distinct isometric cycles γ
and γ′ in G is a (possibly empty) shortest path; in particular, if G is a planar embedded
graph, γ and γ′ do not cross.

Lemma 5.2. Two isometric cycles in a given homology class in a graph with unique shortest
paths do not cross.

Proof: Let γ and γ′ be two isometric cycles in a given homology class. Suppose for a
contradiction that γ and γ′ cross. By the second part of Lemma 5.1, and the assumption
that γ and γ′ cross, γ ∩ γ′ is a single simple path p. Therefore, γ and γ′ cross exactly once.

Suppose γ and γ′ are not null-homologous. Cutting the surface open along γ results
in a connected surface with two boundary components which are connected by γ′. Cutting
the surface further along γ′ does not disconnect the surface. Therefore γ ⊕ γ′ does not
disconnect the surface, and so γ and γ′ are not homologous, a contradiction.

If γ and γ′ are null-homologous, then cutting the surface open along γ results in
a disconnected surface in which γ′ \ p is a path, but between different components of the
surface, a contradiction. �

Corollary 5.3. There are at most ` distinct isometric cycles in a given homology class in
a graph with ` faces and unique shortest paths.

Proof: Consider the set {C1, C2, . . .} of distinct isometric cycles in a given homology class
other than the null homology class. We prove by induction that {C1, C2, . . . , Ci} cut the sur-
face into non-trivial components, each of which is bounded by exactly two of C1, C2, . . . , Ci;
this is true for C1, C2 since they are homologous, distinct and do not cross. Ci+1 must be
contained in one component, bounded by, say, Cj and Ck since Ci+1 does not cross any other
cycle. Cutting this component along Ci+1 creates two components bounded by Cj , Ci+1 and
Ck, Ci+1, respectively. Since the cycles are distinct, these component must each contain at
least one face. A similar argument holds for the set of null-homologous isometric cycles. �

Since there are 22g homology classes and ` = O(n), we get:

Corollary 5.4. There are O(22gn) distinct isometric cycles in a graph of orientable genus
g with unique shortest paths.

We remark that Lemma 5.2 is not true for graphs embedded in non-orientable sur-
faces, because homologous cycles may cross exactly once. In fact, one can easily construct
an arbitrarily large collection of homologous cycles that are pairwise crossing in a graph
embedded in the projective plane.
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Figure 2. Two collections of homologous cycles and their generalized region trees. Left: The cycles are null-
homologous. Right: The cycles lie in a non-trivial homology class.

5.2 Representing isometric cycles in each homology class

We begin by determining the homology classes of each of the O(22gn) isometric cycles in the
following manner. Let p be a simple path, and let [p]h denote the bitwise exclusive-or of the
homology signatures of its edges. Let r be the root of any shortest path tree T . Recall that
σ(r, v) denotes the shortest path between r and v. It is straightforward to compute [σ(r, v)]h
for every vertex v ∈ V in O(gn) time by iteratively computing signatures in a leafward order.
Then, the homology signature of any isometric cycle γ = σ(r, u)·uv ·σ(v, r) can be computed
in O(g) time as [σ(r, u)]h ⊕ [uv]h ⊕ [σ(r, v)]h. We spend O(22ggn) = O(22gn2) time total
computing homology signatures and therefore homology classes. For the remainder of this
section, we consider a set of isometric cycles C in a single homology class.

Let γ, γ′ ∈ C be two isometric cycles in the same homology class. The combination
γ ⊕ γ′ forms the boundary of a subset of faces. That is, G Q(γ ∪ γ′) contains at least two
components. We represent the cycles in C by a tree TC where each edge e of TC corresponds
to a cycle γ(e) ∈ C and each node v in TC corresponds to a subset F (v) ∈ (F ∪ {f∞});
specifically, the nodes correspond to sets of faces in the components of G QC. This tree
generalizes the region tree defined by Borradaile, Sankowski and Wulff-Nilsen for planar
graphs [4] to more general orientable surface-embedded graphs. We also designate a single
representative cycle γ(C) of C and pre-compute its cycle signature [γ(C)] for use in our basis
cycle finding procedure. See Figure 2.

We describe here the construction of TC . Suppose the cycles of C have non-trivial
homology. Initially, TC is a single vertex with one (looping) edge to itself (we will guaran-
tee TC is a tree later). Let γ0 be an arbitrary cycle in C. We compute G′ = G Qγ0. For the
one vertex v of TC , we set F (v) = F ∪ {f∞} and for the one edge e, we set γ(e) = γ0. We
will iteratively add additional edges to TC corresponding to cycles in C before removing the
looping edge e, essentially unfolding TC into a tree in the process.

We maintain the invariants that every component of G′ is bounded by two cycles of
C (initially the cycle γ0 is used twice), each vertex of TC is associated with all faces in one
component of G′ (possibly including f∞), and each edge e in TC is associated with the cycle
in C bounding the faces for the two vertices incident to e. Assuming these invariants are
maintained, and because cycles in C do not cross, each cycle in C lies entirely within some
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component of G′. For each cycle γ ∈ C \ {γ0}, we set G′ := G′ Qγ, subdivide the vertex
associated with the faces of C’s component, associate the two sets of faces created in G′

with the two new vertices of TC , and associate the new edge of TC with γ.

Let r be the vertex of TC associated with f∞. We set γ(C) to be γ(e), remove e
from TC , and root TC at r. Observe that TC has exactly one leaf other than r.

The procedure is somewhat different if cycles in C have trivial homology. Initially, TC
is a single vertex with no incident edges. For the one vertex v of TC , we set F (v) = F ∪{f∞}.
We set G′ = G initially. We relax our invariants so every component of G′ is bounded by
zero or more cycles of C, each vertex of TC is associated with all faces in one component of G′

(possibly including f∞), and each edge e in TC is associated with the cycle in C separating
the faces for the two vertices incident to e. Again, each cycle in C lies entirely within some
component of G′ at each point in time. For each cycle γ ∈ C, we set G′ := G′ Qγ. We
replace the vertex v associated with the faces of C’s component with two vertices v1 and v2

sharing an edge e. We associate the new edge e with γ. We associate the two sets of faces
created in G′ with the two new vertices of TC . For each edge e′ originally incident to v, we
connect e′ to v1 if γ(e′) is incident to faces of v1 and connect e′ to v2 otherwise.

We observe TC is a tree; otherwise, there would be a cycle in TC passing through
some edge e. The faces associated with vertices of that cycle would contain a walk in G
passing from one side of γ(e) to the other, implying γ(e) is non-separating. We root TC at r
and let γ(C) be an arbitrary cycle.

In both cases above, computing G′ Qγ for one cycle γ takes O(n) time. Therefore,
we can compute TC in O(n2) total time.

5.3 Selecting an isometric cycle from a homology class

Let S be an (m − n + 1)-bit support vector. We describe a procedure to compute 〈S, [γ]〉
for every isometric cycle γ in G in O(22gn) time. Using this procedure, we can easily return
the minimum-weight cycle such that 〈S, [γ]〉 = 1.

We begin describing the procedure for cycles in the trivial homology class. Let C be
the collection of null-homologous isometric cycles computed above, and let TC be the tree
computed for this set. Consider any edge e of TC . The first 2g bits of [γ(e)] are equal to 0,
because any co-cycle crosses a cut in the dual an even number of times. Cycle γ(e) bounds a
subset of faces F ′. In particular, F ′ is the set of faces associated with vertices lying below e
in TC . The ith bit of [γ(e)] is 1 if and only if pi crosses cut F ′ an odd number of times; in
other words, the ith bit is 1 if and only if fi ∈ F ′.

We compute 〈S, [γ]〉 for every cycle γ ∈ C in O(n) time by essentially walking up TC
in the following manner. For each edge e in TC going to a leaf v, we maintain a bit z initially
equal to 0 and iterate over each face fi ∈ F (v). If the ith bit of S is equal to 1 then we
flip z. After going through all the faces in F (v), z is equal to 〈S, [γ(e)]〉.

We then iterate up the edges of TC toward the root. For each edge e, we let v be the
lower endpoint of e and set bit z equal to the exclusive-or over all 〈S, γ(e′)〉 for edges e′ lying
below v. We then iterate over the faces of F (v) as before and set 〈S, [γ(e)]〉 equal to z as
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before. We iterate over every face of G at most once during this procedure, so it takes O(n)
time total.

Now, consider the set of isometric cycles C for some non-trivial homology class.
Consider any edge e of TC . Once again, the first 2g bits of [γ(e)] are determined entirely by
the homology class, so we only need consider the remaining bits when determining 〈S, [γ(e)]〉
for different choices of e in TC . Let F ′ be the subset of faces bounded by γ(C)⊕ γ(e). The
ith bit of [γ(e)] disagrees with the ith bit of [γ(C)] if and only if path pi crosses dual cut F ′

an odd number of times; in other words, the ith bits differ if and only if fi ∈ F ′. By
construction, γ(C) lies on the boundary of F (r) and F (v) where r and v are the root and
other leaf of TC respectively. Root r is the only node of TC associated with f∞. We conclude
the ith bit of [γ(e)] disagrees with [γ(C)] if and only if fi is associated with a vertex lying
below e in TC .

We again walk up TC to compute 〈S, [γ]〉 for every cycle γ ∈ C. Recall that [γ(C)] is
precomputed and stored with TC . For each edge e of TC in rootward order, let v be the lower
endpoint of e. Let e′ be the edge lying below e in TC if it exists (recall that TC has exactly
one leaf other than its root as cycles in C have non-trivial homology). If e′ does not exist,
we denote γ(e′) as γ(C). We set z equal to 〈S, γ(e′)〉. We then iterate over the faces of F (v)
as before, flipping z once for every bit i where fi ∈ F (v) and bit i of S is equal to 1. We set
〈S, γ(e)〉 := z. As before, we consider every face at most once, so walking up TC takes O(n)
time.

We have shown the following lemma, which concludes the discussion of our minimum
cycle basis algorithm.

Lemma 5.5. Let G be a graph with n vertices, m edges, and ` faces cellulary embedded in
an orientable surface of genus g such that m = O(n) and ` = O(n). We can preprocess G
in O(22gn2) time so that for any (m − n + 1)-bit support vector S we can compute the
minimum-weight cycle γ such that 〈S, γ〉 = 1 in O(22gn) time.

Theorem 5.6. Let G be a graph with n vertices and m edges, cellularly embedded in
an orientable surface of genus g. We can compute a minimum-weight cycle basis of G
in O(nω + 22gn2 +m) time.

5.4 Improving the time for computing and representing isometric cycles

Here we discuss ways in which we can improve the running time for finding and representing
isometric cycles using known techniques, thereby isolating the bottleneck of the algorithm
to updating the support vectors and computing γj .

The set and representation of isometric cycles can computed recursively usingO(
√
gn)

balanced separators (e.g. [1]) as inspired by Wulff-Nilsen [36]. Briefly, given a set S of
O(
√
gn) separator vertices (for a graph of bounded genus), find all the isometric cycles in

each component of G\S and represent these isometric cycles in at most 22g region trees per
component, as described above. Merging the region trees for different components of G \ S
is relatively simple since different sets of faces are involved. It remains to compute the set
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of isometric cycles that contain vertices of S and add them to their respective region trees.
First note that a cycle that is isometric in G and does not contain a vertex of S is isometric
in G \ S, but a cycle that is isometric in G \ S may not be isometric in G, so indeed we are
computing a superset of the set of isometric cycles via this recursive procedure. However, it
is relatively easy to show that an isometric cycle of G\S can cross an isometric cycle of G at
most once, so, within a given homology class, isometric cycles will nest and be representable
by a region tree.

To compute the set of isometric cycles that intersect vertices of S, we first compute
shortest path trees rooted at each of the vertices of S, generating the Horton cycles rooted
at these vertices; this procedure takes O(

√
gn · n) time using the linear time shortest path

algorithm for graphs excluding minors of sub-linear size [34]. We point out that the algo-
rithm of Amaldi et al. [2] works by identifying Horton cycles that are not isometric and
by identifying, among different Horton-cycle representations of a given isometric cycle, one
representative; this can be done for a subset of Horton cycles, such as those rooted in vertices
of S, and takes time proportional to the size of the representation of the Horton cycles (i.e.,
the O(

√
n) shortest path trees, or O(

√
gn1.5)).

For a given homology class of cycles, using the shortest-path tree representation of the
isometric cycles, we can identify those isometric cycles in that homology class by computing
the homology signature of root-to-node paths in the shortest path tree as before; this process
can be done in O(

√
gn1.5) time. We must now add these cycles to the corresponding region

tree. Borradaile, Sankowski and Wulff-Nilsen [4] describe a method for adding n cycles to
a region tree in O(n poly log n) time that is used in their minimum cycle basis algorithm
for planar graphs; this method will generalize to surfaces for nesting cycles. Therefore
computing the homology classes of these isometric cycles and adding these isometric cycles
to the region trees takes a total of O(22g√gn1.5) time.

In total, this recursive method for computing and building a representation of a
superset of the isometric cycles takes time given by the recurrence relation T (n) = 2T (n/2)+
O(22g√gn1.5) or O(22g√gn1.5) time.

6 Homology Basis

We now describe our algorithm for computing a minimum homology basis. Our algorithm
works for both orientable and non-orientable surfaces, although we assume without loss of
generality that the surface contains at least one boundary component. At a high level, our
algorithm for minimum homology bases is very similar to our algorithm for minimum cycle
bases. As before, our algorithm incrementally adds simple cycles γ1, . . . , γβ to the minimum
homology basis by maintaining a set of β support vectors S1, . . . , Sβ such that the following
hold:

• The support vectors form a basis for Zβ2 .

• When the algorithm is about to compute the jth cycle γj for the minimum homology
basis, 〈Sj , [γj′ ]h〉 = 0 for all j′ < j.
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Our algorithm chooses for γj the minimum-weight simple cycle γ such that 〈Sj , [γ]h〉 = 1.
The following lemma has essentially the same proof as Lemma 4.1.

Lemma 6.1. Let S be a β-bit vector with at least one bit set to 1, and let η be the minimum-
weight cycle such that 〈S, [η]h〉 = 1. Then, η is a member of the minimum homology basis.

As before, our algorithm updates the support vectors and computes minimum homol-
ogy basis cycles in a recursive manner. We define extend(j, k) and update(j, k) as before,
using homology signatures in place of cycle signatures when applicable. Our algorithm runs
extend(1, β) to compute the minimum homology basis.

The one crucial difference between our minimum cycle basis and minimum homology
basis algorithms is the procedure we use to find each minimum homology basis cycle γj given
support vector Sj . The homology basis procedure takes O(β2n log n) time instead of O(22gn)
time, and it requires no preprocessing step. We describe the procedure in Sections 6.1
and 6.2.

The procedure update(j, k) takes only O(βkω−1) time in our minimum homology
basis algorithm, because signatures have length β. Therefore, we can bound the running
time of extend(j, k) using the following recurrence:

T (k) =

{
2T (k/2) +O(βkω−1) if k > 1

O(β2n log n) if k = 1

The total time spent in calls to extend(j, k) where k > 1 is O(βkω−1). The total time
spent in calls to extend(j, 1) is O(β2kn log n). Therefore, T (k) = O(βkω−1 + β2kn log n).
The running time of our minimum homology basis algorithm3 (after sparsifying G) is T (β) =
O(β3n log n) = O((g + b)3n log n).

6.1 Cyclic double cover

In order to compute minimum homology basis cycle γj , we lift the graph into a covering
space known as the cyclic double cover . Our presentation of the cyclic double cover is
similar to that of Erickson [16]. Erickson describes the cyclic double cover relative to a
single simple non-separating cycle in an orientable surface; however, we describe it relative
to an arbitrary set of non-separating co-paths determined by a support vector S, similar to
the homology cover construction of Erickson and Nayyeri [17]. Our construction works for
non-orientable surfaces without any special considerations.

Let S be a β-bit support vector for the minimum homology basis problem as defined
above. We define the cyclic double cover relative to S using a standard voltage construc-
tion [22, Chapter 4]. Let G2

S be the graph whose vertices are pairs (v, z), where v is a vertex
of G and z is a bit. The edges of G2

S are ordered pairs (uv, z) := (u, z)(v, z ⊕ 〈S, [uv]h〉) for
3Our minimum homology basis algorithm can be simplified somewhat by having extend(j, k) recurse

on extend(j, 1) and extend(j + 1, k− 1) and by using a simpler algorithm for update(j, k). This change will
increase the time spent in calls to extend(j, k) where k > 1, but the time taken by calls with k = 1 will still
be a bottleneck on the overall run time.
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Figure 3. Constructing the cyclic double cover. Left to right: A pair of co-cycles Ψ on the torus Σ; the
surfaces (Σ′, 0) and (Σ′, 1); identifying copies of one co-cycle; preparing to identify copies of the other co-cycle;
the cyclic double cover.

all edges uv of G and bits z. Let π : G2
S → G denote the covering map π(v, z) = v. The

projection of any vertex, edge, or path in G2
S is the natural map to G induced by π. We

say a vertex, edge, or path p in G lifts to p′ if p if the projection of p′. A closed path in G2
S

is defined to bound a face (be a boundary component) of G2
S if and only if its projection

with regard to π bounds a face (is a boundary component) of G. This construction defines
an embedding of G2

S onto a surface Σ2
S ; we will prove G2

S and Σ2
S are connected shortly.

We can also define G2
S in a more topologically intuitive way as follows. Let Ψ be

a set of co-paths which contains each co-path pi for which the ith bit of S is equal to 1.
Let Σ′ be the surface obtained by cutting Σ along the image of each co-path in Ψ. Note
that Σ′ may be disconnected. Each co-path pi ∈ Ψ appears as two copies on the boundary
of Σ′ denoted p−i and p+

i (note that p−i and p+
i may themselves be broken into multiple

components). Create two copies of Σ′ denoted (Σ′, 0) and (Σ′, 1), and let (p−i , z) and (p+
i , z)

denote the copies of p−i and p+
i in surface (Σ′, z). For each co-path pi ∈ Ψ, we identify (p+

i , 0)
with (p−i , 1) and we identify (p+

i , 1) with (p−i , 0), creating the surface Σ2
S and the graph G2

S

embedded on Σ2
S . See Figure 3.

The first three of the following lemmas are immediate.

Lemma 6.2. Let γ be any simple cycle in G, and let s be any vertex of γ. Then γ is the
projection of a unique path in G2

S from (s, 0) to (s, 〈S, [γ]h〉).

Lemma 6.3. Every lift of a shortest path in G is a shortest path in G2
S .

Lemma 6.4. Let γ be the minimum-weight simple cycle of G such that 〈S, [γ]h〉 = 1, and
let s be any vertex of γ. Then γ is the projection of the shortest path in G2

S from (s, 0)
to (s, 1).

Lemma 6.5. The cyclic double cover G2
S is connected.

Proof: There exists some simple cycle γ in G such that 〈S, [γ]h〉 = 1. Let s be any vertex
of γ. Let v be any vertex of G. We show there exists a path from (v, z) to (s, 0) in G2

S

for both bits z. There exists a path from v to s in G so there is a path from (v, z) to one
of (s, 0) or (s, 1) in G2

S . The other of (s, 0) or (s, 1) may be reached by following the lift
of γ. �

Observe that G2
S has 2n vertices and 2m edges. Each co-path pi shares an even

number of edges with each face of G. By Lemma 6.2, both lifts of any face f to G2
S are
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cycles; in particular both lifts are faces. However, there may be one or more boundary
cycles γ of G such that 〈S, [γ]h〉 = 1. It takes both lifts of such a cycle γ to make a
single boundary component in G2

S . We conclude G2
S contains 2` faces and between b and 2b

boundary cycles. Surface Σ2
S has Euler characteristic 2n−2m+2` = 2χ. It is non-orientable

if and only if there exists a one-sided cycle η such that 〈S, [η]h〉 = 0. If both Σ and Σ2
S are

non-orientable, then Σ2
S has genus at most 2g + b. If only Σ is non-orientable, then Σ2

S

has genus at most g + b/2 − 1. If both surfaces are orientable, then Σ2
S has genus at

most 2g + b/2− 1. In all three cases, the genus is at most O(β).

6.2 Selecting homology basis cycles

Let S be any β-bit support vector. We now describe our algorithm to select the minimum-
weight cycle γ such that 〈S, [γ]h〉 = 1. Our algorithm is based on one by Erickson and
Nayyeri [17] for computing minimum-weight cycles in arbitrary homology classes, except
we use the cyclic double cover instead of their Z2-homology cover. We have the following
lemma. While it was shown with orientable surfaces in mind, the proof translates verbatim
to the non-orientable case.

Lemma 6.6 (Erickson and Nayyeri [17, Lemma 5.1]). In O(n log n + βn) time, we
can construct4 a set Π of O(β) shortest paths in G, such that every non-null-homologous
cycle in G intersects at least one path in Π.

Let G2
S be the cyclic double cover of G with regard to S. Our algorithm constructs G2

S

in O(βn) time.

Suppose our desired cycle γ intersects shortest path σ ∈ Π at some vertex s. By
Lemma 6.4, simple cycle γ is the projection of the shortest path in G2

S from (s, 0) to (s, 1).
Let γ̂ be this shortest path in G2

S . Let σ̂ be the lift of σ to G2
S that contains vertex (s, 0).

By Lemma 6.3, path σ̂ is also a shortest path in G2
S . If γ̂ uses any other vertex (v, z) of σ̂

other than (s, 0), then it can use the entire subpath of σ̂ between (s, 0) and (v, z).

Now, consider the surface Σ2
S Qσ̂ which contains a single face bounded by two copies

of σ̂ we denote σ̂− and σ̂+. For each vertex (v, z) on σ̂, let (v, z)− and (v, z)+ denote its two
copies on σ̂− and σ̂+ respectively. From the above discussion, we see γ̂ is a shortest path
in Σ2

S Qσ̂ from one of (s, 0)− or (s, 0)+ to (s, 1).

To find γ, we use the following generalization of Klein’s [29] multiple-source shortest
path algorithm:

Lemma 6.7 (Cabello et al. [8]). Let G be a graph with n vertices, cellularly embedded
in a surface of genus g, and let f be any face of G. We can preprocess G in O(gn log n) time
and O(n) space so that the length of the shortest path from any vertex incident to f to any
other vertex can be retrieved in O(log n) time.

Our algorithm iterates over the O(β) shortest paths present in Π. For each such
path σ, it computes a lift σ̂ in G2

S , cuts Σ2
G along σ̂, and runs the multiple-source shortest

4We only need to construct Π once for the entire minimum homology basis algorithm, but constructing
it once per basis cycle does not affect the overall run time.
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path procedure of Lemma 6.7 to find the shortest path from some vertex (s, z)± on σ̂±

to (s, z ⊕ 1). Each shortest path it finds projects to a closed path γ′ such that 〈S, [γ′]h〉 =
1. By the above discussion, the shortest such projection can be chosen for γ. Run-
ning the multiple-source shortest path procedure O(β) times on a graph of genus O(β)
takes O(β2n log n) time total. We conclude the discussion of our minimum homology basis
algorithm.

Lemma 6.8. Let G be a graph with n vertices, m edges, and ` faces cellulary embedded in
a surface of genus g such that m = O(n) and ` = O(n). For any β-bit support vector S we
can compute the minimum-weight cycle γ such that 〈S, γ〉 = 1 in O(β2n log n) time.

Theorem 6.9. Let G be a graph with n vertices and m edges, cellularly embedded in
an orientable or non-orientable surface of genus g with b boundary components. We can
compute a minimum-weight homology basis of G in O((g + b)3n log n+m) time.
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