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ABSTRACT
With the massive amounts of data available today, it is com-
mon to store and process data using multiple machines.
Parallel programming platforms such as MapReduce and
its variants are popular frameworks for handling such large
data. We present the first provably efficient algorithms to
compute, store, and query data structures for range queries
and approximate nearest neighbor queries in a popular par-
allel computing abstraction that captures the salient features
of MapReduce and other massively parallel communication
(MPC) models. In particular, we describe algorithms for
kd-trees, range trees, and BBD-trees that only require O(1)
rounds of communication for both preprocessing and query-
ing while staying competitive in terms of running time and
workload to their classical counterparts. Our algorithms are
randomized, but they can be made deterministic at some
increase in their running time and workload while keeping
the number of rounds of communication to be constant.

1. INTRODUCTION
Rapid advances in sensing technologies as well as Internet

applications such as social networks have led to unprece-
dented increase in the size and quantity of data sets. The
term “big data” has become ubiquitous to describe data that
cannot be stored or processed on a single machine. The
MapReduce platform [18], its open source implementation
Hadoop [43], and related platforms (such as Pregel [37],
Spark [44], and Google Cloud Dataflow [7]) have emerged
as dominant computing platforms for big-data processing.
At a high level, these systems focus on computation local
to the data stored on individual machines and have become
popular due to their ability to abstract away the distributed
nature of data storage and processing. The data itself is
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stored on disk in a distributed file system, for example,
the Hadoop Distributed File System (HDFS) of the Hadoop
platform [41]. A distributed file system can be treated as
a cluster of machines, each with its own disk space where
the data is stored. A high level programming language such
as Pig [1] is used to write a program that is pushed to the
machines where the data is stored and processed.

Motivated by social networks, target advertisements, and
other applications, there has been a flurry of research ac-
tivity on computing graph theoretic and machine learning
primitives in MapReduce and other big data platforms.
Moreover, advances in mapping and sensing technologies
have led to the emergence of large geometric data sets as
well. Even non-geometric data is often mapped to a set of
points in a geometric space. One of the important prob-
lems in databases, GIS, and computational geometry is to
answer various queries on such data. One could conceivably
scan the entire data to answer each query, but since several
queries are answered on the same data, it is desirable to
preprocess data into a data structure so that a query can
be answered quickly. A popular approach to cope with big
data in the context of query processing is to work with a
small summary of data such as random samples, coresets,
sketches, etc. These methods are successful for answering
aggregation queries, but they do not work well when queries
involve analyzing local structure of data such as nearest-
neighbor queries or range-reporting queries (especially for
small ranges). In such instances, one has to work with the
entire data. This difficulty raises the problem of construct-
ing data structures on big data platforms. In this paper,
we study data structures for range-reporting and nearest-
neighbor queries – two very popular queries on geometric
data – on big data platforms. In particular, we develop effi-
cient algorithms for constructing some of the classical data
structures such as kd-trees, BBD-trees, and range trees.

Our model. The technology for big data computation is in
a constant state of flux. For instance, in MapReduce [18],
the output data from a phase of computation is shuffled
and stored on disk in the distributed file system. Spark [44]
builds on MapReduce and attempts to keep data in memory
to speed up machine learning applications that require mul-
tiple passes over the same data. Many of these platforms
also incorporate streaming and real-time primitives.

To avoid dependence on specifics of a particular platform,
we present our algorithms in a simple but popular abstract
model called the (basic) massively parallel communication
(MPC) model, originally proposed by Beame et al. [14] (see
also Andoni et al. [9]).
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Let n be the size of an input instance, and let I be a set of
m machines. For simplicity, we assume I to be {0, . . . ,m−
1}. Set s = n/m, and for simplicity, assume s is an integer.1

Each machine has O(s) memory (or space). As is standard,
we assume s ≥ nα for some positive constant α < 1. Com-
putation proceeds in rounds. In each round, each machine
reads its input, does some computation, and emits some out-
put, where each output item is marked with the ID of the
machine for which it is input in the next round. The size
of the input to and output from any machine is bounded by
O(s) in each round. Communication across machines occurs
only between rounds.

We explicitly allow data to persist on machines between
rounds of computation and after all computation has been
performed, as long as the total amount of data stored on
each machine never exceeds O(s). By considering data stor-
age as we do, we are able to build and store data structures
for massive geometric data. The explicit persistence of data
between rounds and our hard requirements on the space of
each machine are the main differences between our model
and the MPC model as described by Beame et al. [14]. An-
doni et al. [9] also limit the space on each machine, but they
do not explicitly consider persistent storage. In fact, some
work in similar models (e.g. Goodrich et al. [29]) require
machines to communicate their own data to themselves in
order for data to persist between rounds of computation.

Queries to our data structures behave as any other MPC
computation. They simply take advantage of the distributed
data structures already stored in the machines to reduce
query time. When preprocessing a set of points P to build
our data structures, we assume the points of P are dis-
tributed arbitrarily throughout the machines. Individual
queries are sent to an arbitrary machine.

The efficiency of an algorithm is measured using three
metrics: the number of rounds of computation R, the run-
ning time T , and the total work W . The first is obvious;
we describe the latter two below. For machine β ∈ I, let
tβr denote the computation time spent by this machine in
round r. The running time is defined as

T =

R∑
r=1

max
β∈I

tβr.

Note that this definition does not count the time it takes to
communicate between the machines, which is accounted for
separately by the quantity R.

The total work is defined as

W =

R∑
r=1

∑
β∈I

tβr.

In order to make guarantees about our total work, we as-
sume a machine performs zero work in a single round of
computation if it does not receive any input or communica-
tion at the beginning of that round. This assumption can
be interpreted as each machine “sleeping” through a round
of computation unless it is given a reason to wake up, and
this makes it possible for W to be significantly smaller than
m · T .

While most prior work on the MPC model focuses on mini-
mizing the number of computation roundsR of an algorithm,

1For simplicity, we will ignore floor and ceiling operators
throughout this paper and assume appropriate choice of pa-
rameters so that the ratios are integers when needed.

e.g., [14, 23, 31], we must consider all three metrics in order
to say anything interesting about geometric data structures.
Consider processing a set of points P ⊆ R2 so that one may
report the points lying within an axis-aligned query rectan-
gle. If number of rounds were our only concern, we would
build a trivial data structure in one round of computation
by doing nothing. A query for rectangle �q would then be
performed in one round of computation as well by having
each machine individually check which of its points lie in-
side �q. However, queries will take O(s) time and require
O(n) work. We could slightly improve our data structure
by building kd-trees for each machine’s set of points using
one round, O(s log s) time, and O(n logn) total work (see
Section 3). The runtime of a query would improve to O(

√
s)

in the worst case, but queries would still require Ω(m) work
in the best case and O(

√
sm) = O(n/

√
s) work in the worst

case. Unless s is nearly as large as n, these worst-case work-
loads are significantly higher than what is possible using
classical sequential data structures. Therefore, we will focus
on minimizing all three performance metrics.

Our results. Let P be a set of n points in Rd, where d
is a constant. We present efficient algorithms for building
and querying kd-trees, range trees, and BBD-trees on P .
The first two are used for range queries and the last one is
used for approximate nearest-neighbor (NN) queries. They
are formally defined in later sections; see [12,17] for details.

A kd-tree uses linear space and O(n1−1/d + k) query time
to answer an orthogonal range query (i.e., reporting all k
points of P lying in a query axis-parallel rectangle). It can be
computed in O(n logn) time. In contrast, a range tree uses
O(n logd−1 n) space and O(logd−1 n + k) query time; range
trees with slightly smaller space are also known [5]. A BBD-
tree can answer an ε-approximate NN query in O(cd,ε logn)
time using O(n) space where cd,ε is a constant dependent
on d and ε.

For all of the data structures we consider, we will show a
bound of R = poly(logs n) = O(1) on the number of rounds
of computation required both to build the data structure and
to perform queries. Our running times T for building our
data structures and performing queries will be comparable
to the best sequential algorithms when performed on point
sets of size s and our total work W will be comparable with
the best sequential algorithms for point sets of size n. More
precisely, we obtain the following results; see Table 1 for a
summary.
• A kd-tree on P can be built inO(1) rounds, O(s log s) time,
and O(n logn) work with probability at least 1 − 1

nΩ(1) .2

Queries can be answered using O(1) rounds and O(n1−1/d+
k) work where k is the output size; the running time is

O(s1−1/d + k′) where k′ is the maximum number of points
reported by a machine.
• A BBD-tree on P can be built in O(1) rounds, O(s log s)
time, and O(n logn) work with probability at least 1− 1

nΩ(1) .

Queries can be answered in O(1) rounds, O
(

1
εd

log
(

1
ε

)
logn

)
time, and 1

εO(d) logn work.

• A range tree on P can be built in O(1) rounds, O(s logd s)

2The kd-tree we build is a slight variant of the standard kd-
tree in that unlike the latter, our tree is not exactly balanced
in partitioning the points. Nevertheless, we show that the
space, query, and preprocessing requirements are asymptot-
ically identical.



time, and O(n logd n) work.3 Queries can be answered in
O(logd n+k) time and work in O(1) rounds of computation,
where k is the number of points reported.

The algorithm for kd-trees can be extended to many vari-
ants of kd-trees such as hB-trees [36], hBπ-trees [24], and
box trees [4]. It can also be extended to construct a partition
tree [15] that is used for answering simplex range searching
queries, i.e., reporting all points that lie inside a query sim-
plex.

The algorithms for building kd-trees and BBD-trees use
randomization. However, they can be derandomized while
keeping the number of computation rounds constant by in-
creasing the running time – we obtain a tradeoff between
the number of rounds and the running time.

...

Figure 1. A kd-tree partitions space into a hierarchy of
boxes. Each box is represented by a node in a tree, and
nesting boxes are represented by ancestor-descendant rela-
tionships within the tree.

We remark that there is extensive work on I/O-efficient
data structures in databases. For example, the kdB-tree
is an I/O-efficient version of a kd-tree [10]. Similarly I/O-
efficient range trees have been proposed [10]. Our algorithms
can be modified easily to construct I/O-efficient versions of
the data structures.

Our techniques. Our algorithms for constructing data
structures depend upon the concept of ε-approximations de-
fined formally in Section 2.1. Intuitively, an ε-approximation
is a small subset of points S ⊂ P such that any low complex-
ity region R of Rd contains about the same fraction of points
of S as that of P . One property common to most of the data
structures we build is that they induce a hierarchical decom-
position of Rd represented by a balanced tree. See Figure 1.
In a constant number of rounds of computation, we sample
an ε-approximation S of P . We choose S to be small enough
to fit on a single machine, so we use a sequential algorithm to
build the first few layers of the tree data structure using only
points in S. The regions of Rd associated with the leaves of
the partial tree partition S into approximately equal sized
subsets. Because S is an ε-approximation of P , these same
regions partition P into almost equal sized subsets as well.
We recursively build the lower levels of the data structure
on each piece of the partition.

Our algorithms are simple, and our analysis shows that a
simple sampling based technique gives essentially the best
possible running time in the MPC model, without using ad-

3In order to have sufficient space just to store the range tree,
we slightly amend our model so the memory and per-round
input and output size of each machine is O(s logd−1 n).

ditional features that some modern data processing tech-
niques may enable.

Sampling and the similar concept of filtering have been
used before for the design of efficient algorithms for models
based on MapReduce [22, 23, 32, 33]. However, these algo-
rithms complete their work on a single machine after ac-
quiring a small set of samples. In contrast, the partial trees
our algorithms compute using their sample sets are not an
entire solution; the algorithms must continue processing the
remaining points in the input set using the partial trees to
aid in the remaining computation.

Related work. A common concern when designing data
structures for massive amounts of (geometric) data is the
cost of reading and writing from disk, called an I/O opera-
tion. Aggarwal and Vitter [6] described the two-level I/O-
memory model in an attempt to understand those costs. Ex-
tensive work has been done on developing range-searching
data structures in this model. See the survey by Arge [10].
Agarwal et al. [3] describe I/O-optimal algorithms for con-
structing kd-trees and BBD-trees; however their techniques
are not easily parallelizable.

An alternative to the two-level I/O model described above
is the cache-oblivious model introduced by Frigo et al. [25].
In essence, algorithms for the traditional RAM model are
evaluated in terms of performance using the two-level I/O
model with unknown internal memory size and unknown
block size. The analysis assumes transfers between internal
and external memory are done using an optimal caching
strategy. Again, there is extensive study of range-searching
data structures in this model; see Arge et al. [11] for a survey.

While the I/O models above are designed with the storage
of massive data in mind, they are still inherently sequential.
In contrast, the Parallel Random Access Machine (PRAM)
model ignores I/O complexities and instead models parallel
processors sharing a common memory pool. Many efficient
PRAM algorithms have been described; see Goodrich [28]
for a survey.

The Bulk Synchronous Parallel (BSP) model [42] of Valiant
models parallel processing, communication, and synchro-
nization. A specialization of this model to multiprocessors is
termed coarse grained parallelism (CGP) [19]. This model is
similar to MPC; there are p ≤ nε processors (where n is the
input size and ε ≤ 0.5), each of which is allowed O(n/p) com-
munication between rounds, and arbitrary sequential com-
putation. The goal is to simultaneously optimize the num-
ber of rounds, as well as the sequential computation done
per processor. Dehne et al. [19] present optimal algorithms
for several geometric problems. Simple deterministic parti-
tioning of the point sets, however, suffice for the problems
they consider. Furthermore, they do not focus on the more
challenging problem of constructing data structures.

In order to theoretically model modern distributed pro-
gramming frameworks, many authors have focused on vari-
ations of the MapReduce model [9, 14, 26, 29, 31, 33]. There
is extensive work in database systems on developing algo-
rithms under MapReduce and its variants, e.g., algorithms
for large graph processing, join operations, query processing
etc. See e.g. [30,34,40].

From a theoretical perspective, Goodrich et al. [29] de-
scribe a connection between MapReduce and the BSP model
mentioned above, which leads to efficient implementation of
some geometric algorithms. Andoni et al. [9] develop ge-
ometric approximation algorithms under MapReduce; see



Performance metric kd-tree BBD-tree Range tree

Pre-processing

Rounds O(1) O(1) O(1)

Time O(s log s) O(s log s) O(s logd s)

Work O(n logn) O(n logn) O(n logd n)

Query

Rounds O(1) O(1) O(1)

Time O(s1−1/d + k′) O(logn) O(logn+ k)

Work O(n1−1/d + k) O(logn) O(logd n+ k)

Table 1. Our results.

also [19]. However the partitioning scheme used in [9] is
based on randomly shifted quadtrees, hence largely inde-
pendent of the input point set. On the other hand, we use
a small sample of the input points in a clever way to par-
tition the points. There is some work on similarity search
in high dimensions in the distributed setting [13]. However,
their focus is on reducing the amount of communication per
round and is based on distributed locality-sensitive hashing,
whereas our approach is quite different and is tailored for low
dimensions. The most closely related works to this paper
is MapReduce implementations for analyzing and querying
spatial and geometric data, see [2, 8, 20–22] and references
there in. For example, SpatialHadoop [22] is a full-fledged
MapReduce framework that adapts traditional spatial index
structures like R-tree and R+-tree to form a two-level spatial
index. It is also equipped with other operations, including
range query, k-nearest neighbors, and spatial join. How-
ever, we are not aware of any work on constructing range-
searching and other geometric query data structures with
provable bounds on performance, which is the main focus of
this paper.

The rest of the paper is organized as follows. We describe
some primitive operations useful for building geometric data
structures in Section 2. We discuss kd-trees and an exten-
sion of our techniques to partition trees [15] in Section 3. We
discuss BBD-trees and range trees in Sections 4 and 5, re-
spectively. Finally, we conclude in Section 6 by mentioning
some directions for future research.

2. MPC PRIMITIVES
Before describing our MPC primitives, we introduce the

notion of an ε-approximation, which will be constructed by
one of the primitives and which will be used by many of our
algorithms.

2.1 Range spaces and ε-approximations
A range space Σ is a pair (X,R), where X is a ground set

and R is a family of subsets (ranges) of X. For example, X
is a set of points in R2 and

R = {X ∩ 2 | 2 is a rectangle in R2}.

A subset X ′ ⊆ X is shattered by Σ if {X ′ ∩ R | R ∈ R} =

2X
′
. The VC dimension of Σ is the size of the largest subset

of X shattered by Σ. If there are arbitrarily large shattered
subsets, the VC dimension of Σ is set to ∞.

Given range spaces Σ1 = (X,R1) and Σ2 = (X,R2) with
VC dimensions δ1 and δ2 respectively, the union of Σ1 and
Σ2 is defined as

(X,R) = (X, {R1 ∪R2 | R1 ∈ R1, R2 ∈ R2}) ,

and has VC dimension O(δ1 + δ2). The complement of Σ is
defined as (X,R) = (X, {X \R | R ∈ R}) and has the same
VC dimension as Σ. See Chazelle [16] for details.

Given a range space Σ = (X,R) and 0 ≤ ε ≤ 1, a subset
X ′ ⊆ X is called an ε-approximation of Σ if for any range
R ∈ R, we have ∣∣∣∣ |X ′ ∩R||X ′| − |R||X|

∣∣∣∣ ≤ ε.
The following bound on an ε-approximation was proved by
Li et al. [35].

Theorem 2.1 ( [35]). There is a positive constant c
such that if Σ = (X,R) is a range space with VC dimen-

sion δ, then a random subset of X of size c
ε2

(
δ + log 1

ψ

)
is

an ε-approximation of X with probability at least 1− ψ.

For range spaces with constant VC dimension, a random
subset of size O

(
1
ε2

logn
)

is an ε-approximation with prob-

ability at least 1−1/nΩ(1), where n is the size of the ground
set.4 The ranges that we consider in this paper are induced
by axis-aligned boxes, simplices, and rectilinear regions de-
fined by constant number of rectangles. Since these regions
can be formed by taking a Boolean combination of a constant
number of halfspaces, the range spaces induced by these re-
gions have constant VC dimension.

2.2 Geometric primitives and techniques
We define a few primitive operations that we use to build

our distributed data structures :

PrefixSum(P, I, rank, value): Given a set of points P stored
on a contiguous subset of machines I = {i0, i0+1, . . . },
a rank function rank : P → Z+, and a value function
value : P → R, compute the prefix sum of values for
each point p ∈ P where rank(p) is the rank of point p
in some sorted order.

Broadcast(S, I, β): Given a set of words S, a contiguous set
of machines I = {i0, i0 + 1, . . . }, and a machine β
storing S, copy S to all machines in I. We require S

has size O(s1/2).

Partition(P, I,Π, β): Given a spatial subdivision Π of Rd
into simple regions (e.g., rectangles, simplices), reor-
ganize the points of P so that all points lying in a cell
π of Π lie on a distinct contiguous subset of machines

4Better bounds for the size of ε-approximations exist for
range spaces with finite VC dimension [16], but the bounds
given here suffice for our purposes.



Figure 2. Parition(Π, I, β) reorganizes the points stored
on I as dictated by the partition Π.

Iπ ⊆ I. See Figure 2. We assume I itself is also a
contiguous subset of machines {i0, i0 + 1, . . . }. We re-

quire that |Π| = O(s1/2), |Π| ≤ |I|, and each cell π of
Π contains O(|P |/|Π|) points.

Sample(P, I, r, β): Given a set of points P stored on a con-
tiguous subset of machines I = {i0, i0 + 1, . . . }, com-
pute a (1/r)-approximation S ⊆ P of size O(r2 logn)

and send it to machine β. We require |S| = O(s1/2).5

Before describing how to implement these primitives effi-
ciently, we describe a procedure that will be used by these
primitives.

To facilitate transfer of information between a given con-
tiguous subset of machines I = {i0, i0 +1, . . . }, we construct

a tree T , a complete s1/2-ary tree with |I| leaves. Each
node v of T is associated with a single machine β(v) ∈ I
such that each machine is used at most once per level of T .
We let rT denote the root of T and set β(rT ) appropriately
depending on the primitive. Let λT denote the depth of T .
We have λT = O(logs1/2 |I|) = O(1). Goodrich et al. [29]
use a similar tree to compute prefix sums. A number of
simple operations can be completed in a constant number of
rounds of computation guided by T , by passing information
between machines belonging to parent and child nodes. For
example, it is straightforward to compute the max and sum
of several numbers stored across the machines. While send-
ing information from parent to children, the parent node’s
machine sends O(s1/2) data to each child node’s machine. If
information is sent from children to parent, each child’s ma-
chine sends O(s1/2)-size data to the parent’s machine. Since

each node has s1/2 children, the input and output size for
each machine is bounded by O(s) in one round.
We now describe an implementation of above primitives.

PrefixSum(P, I, rank, value): It can be implemented in
O(1) rounds with linear time and work using an algorithm
of Goodrich et al. [29]. Without giving details here, we state
the bounds :

Lemma 2.2. PrefixSum(P, I, rank, value) can be
implemented by a deterministic algorithm in O(1) rounds,
O(s) time, and O(n) total work.
5Strictly speaking, the algorithm for computing a (1/r)-
approximation depends on the underlying range space. In
our applications, the range space associated with P will be
clear from the context and will have constant VC dimension.

Broadcast(S, I, β): We use the tree T over the machines
in I. Our broadcast procedure takes exactly λT + 1 = O(1)
rounds of computation. In round i, each machine β(v) for a
node v at level i− 1 receives a copy of S. If it has not done
so already, β(v) stores a copy of S. When the round of com-
putation ends, β(v) sends a copy of S to each machine β(v′)
where v′ is a child of v in T .

Lemma 2.3. Broadcast(S, I, β) can be implemented by a
deterministic algorithm using O(1) rounds of computation,
O(s) time, and O(n) total work.

Partition(P, I,Π, β): Order the cells of Π in an arbitrary
way, and let {π0, π1, . . . } be the cells of Π. We let Iπk =
{i0 + k(|I|/|Π|), . . . , i0 + (k + 1)(|I|/|Π|)− 1}. We begin by
running Broadcast(Π, I, β) to store Π on all the machines.
In order to distribute the points of each partition cell π
evenly across Iπ, we use the PrefixSum primitive to count
for each machine-cell pair (i, k) the points that are either
in cells {π0, . . . , πk−1} or in cell πk and stored on machines
{i0, . . . , i−1}. Using these counts, we can then quickly finish
the partitioning procedure.

Each machine i ∈ I creates a set of |Π| counting points Ci
to be given to the PrefixSum primitive. The point qi,k ∈ Ci
is associated with the cell πk. Let rank(qi,k) = k|I| +
i − i0 + 1, and let value(qi,k) be equal to the number of
points on machine i in cell πk. Let C =

⋃
i∈I Ci. We

run PrefixSum(C, I, rank, value). The prefix sum of count-
ing point qi,k is the number of points in cell πk stored on
machines {i0, . . . , i − 1} plus the number of points in cells
{π0, . . . , πk−1}. Now, let {p0, p1, . . . } ⊆ P be a set of points
in arbitrary order belonging to some machine i and par-
tition cell πk. Let q|I|+1,k = q|I|,k + value(|I|, k). Each
value qi+1,k can be sent to machine i in one round of com-
munication. Machine i then sends point pj to machine
i0 + k(|I|/|Π|) + b(qi+1,k − qi,k + j)/(|P |/|Π|)c.

Lemma 2.4. Partition(P,Π, I, β) can be implemented by
a deterministic algorithm using O(1) rounds of computa-
tion, O(s log s) time, and O(n logn) total work.

Sample(P, I, r, β): We first describe a simple Las Vegas
algorithm for computing the sample S ⊆ P . Each machine i
selects a subset of its points Si by selecting points inde-
pendently, each with probability p = c(r2/|P |) lnn for some
constant c that depends on the VC dimension of the underly-
ing range space. We then use the tree T to compute the total
number of selected points in λT + 1 = O(1) rounds of com-
putation by summing the values |Si| across each machine. If
this number is more than 2cr2 lnn or less than (c/2)r2 lnn,
an incorrect number of points have been selected and the
procedure restarts. Otherwise, all the selected points from
each machine are sent to β to form the set S. A standard
Chernoff bound [39] guarantees the probability of restarting
even once is at most exp(−(c/8)r2 lnn) ≤ 1/n2 for large
enough c. Each sample of size |S| is chosen with equal prob-
ability, so S is an (1/r)-approximation with probability at
least 1− 1/n2 as well by Theorem 2.1.

We can also choose S deterministically as follows. We use
the tree T and let β(rT ) = β. Our sampling procedure still
takes λT + 1 = O(1) rounds of computation. In round i,
each machine β(v) for a node v at depth λT − i+ 1 receives
a set Sv of O(s) points from its children that may be used in
the (1/r)-approximation. If v is a leaf of T , then β(v) simply
uses the members of P initially found at β(v). Machine β(v)



computes a (c/r)-approximation S′v ⊆ Sv, for some suffi-

ciently small constant c, of size O(r2 logn) = O(s1/2) using
the deterministic algorithm of Matous̆ek [38] in
O(s(r2 log r)δ) time. If v = rT , then S′v is the final (1/r)-
approximation desired by the algorithm. When the round of
computation ends, β(v) sends set S′v to β(p(v)), the machine
corresponding to the parent of v.

Lemma 2.5. The above procedure computes a
(1/r)-approximation of P .

Proof. Let Pv be the subset of points contained in the
subtree of T rooted at v, and let λv be the depth of v. Fix a
node v, and assume inductively that S′v′ is a (γλv′−λT c/r)-
approximation of Pv′ for each descendant v′ of v for some
constant γ. The children of v can be divided into three
groups: the children where every descendant leaf has depth
λT , children where every descendant leaf has depth λT − 1,
and the solitary child with descendant leaves of both depths.
Let V1, V2, and V3 be these respective groups of child nodes.
For any pair of children v1, v2 in a single group, there ex-
ist constants c′ and c′′ such that c′|Pv2 | ≤ |Pv1 | ≤ c′′|Pv2 |
and c′|S′v2

| ≤ |S′v1
| ≤ c′′|S′v2

|. Let v′ be an arbitrary node
of Vi, and let xi = |S′v′ | and yi = |Pv′ |. Let R be an arbitrary
range in our range space. We have∣∣∣∣ |Sv ∩R||Sv|

− |Pv ∩R||Pv|

∣∣∣∣
≤

3∑
i=1

∣∣∣∣∣ |(
⋃
v′∈Vi S

′
v′) ∩R|

|
⋃
v′∈Vi S

′
v′ |

−
|(
⋃
v′∈Vi Pv′) ∩R|
|
⋃
v′∈Vi Pv′ |

∣∣∣∣∣
≤

3∑
i=1

∣∣∣∣∣ |(
⋃
v′∈Vi S

′
v′) ∩R|

c′|Vi|xi
−
|(
⋃
v′∈Vi Pv′) ∩R|
c′′|Vi|yi

∣∣∣∣∣
≤

3∑
i=1

1

|Vi|
∑
v′∈Vi

c′′′
(∣∣∣∣ |S′v′ ∩R||S′v′ |

− |Pv
′ ∩R|
|Pv′ |

∣∣∣∣)
≤ γλv−λT c/2r

where c′′′ is a constant.
Therefore, Sv is a (γλv−λT c/2r)-approximation of Pv. Set

S′v is a (γλv−λT c/r)-approximation [38, Observation 4.3]. T
has depth O(1), so S′rT is a (1/r)-approximation of PrT = P

when c is sufficiently small.6

Lemma 2.6. (i) Sample(P, I, r, β) can be implemented by
a Las Vegas algorithm using O(1) rounds of computation,
O(s) time, and O(|P |) total work, with probability at least

1− 1/nΩ(1).
(ii) The procedure can be implemented by a deterministic
algorithm using O(1) rounds of computation, O(s(r2 log r)δ)
time, and O(|P |(r2 log r)δ) total work.

3. KD-TREE
Given a set of n points P ∈ Rd, a kd-tree on P can an-

swer an orthogonal range-reporting query in O(n1−1/d + k)
time using O(n) space, where k is the number of points ly-
ing inside the query rectangle. Each node v of the tree is

6Our procedure and its proof require a fairly small con-
stant c. One can increase the constant by guaranteeing
each set Pv′ has equal size and each set Sv′ has equal size
by choosing T carefully and adding O(n) additional points.
While possible, doing so would be very tedious in our model.

Figure 3. Tr is stored on a single machine. The leaves
of Tr partition P into smaller subsets, each represented by
their own recursively constructed kd-trees. Shaded subtrees
may be stored on a single machine; however the space used
on a single machine is still O(s).

associated with a d-dimensional rectangle 2v, called the cell
of v, with the root cell being large enough to contain the
entire set P . Let Pv = P ∩ 2v. If |Pv| ≤ 1, v is a leaf and
Pv is stored at v. If |Pv| > 1, then 2v is split into two cells
2w and 2z by an axis-parallel hyperplane hv such that the
interior of each cell contains at most |Pv|/2 points of Pv. If
the depth of v is i, then hv is parallel to the ((i mod d) +1)-
th axis. The cell 2w (resp. 2z) is associated with the child
w (resp. z) of v. Since the partitions are balanced, the tree
has height O(logn). The size of the tree is O(n). It is well
known that the tree can be constructed in O(n logn) time
by first sorting P along each axis and then constructing it
level by level in a top-down manner, spending O(n) time at
each level. See [17] for details.

Queries are performed recursively in a top-down manner
starting with the root node. Given a query rectangle ρ and
a node v of the tree, there are three cases : (a) 2v ⊆ ρ,
then all points of Pv are reported , (b) 2v ∩ ρ = ∅, there
is nothing to be done, (c) 2v ∩ ∂ρ 6= ∅, we recurse on the
children of v.

3.1 An MPC algorithm
We now describe an algorithm for constructing the kd-

tree, denoted by T := T(P ), of linear size that has

O(s1−1/d + k) query time. Our algorithm uses only O(1)
rounds of computation to build the tree. T is constructed
and stored recursively in a distributed fashion across all ma-
chines. If |P | = O(s), T is stored on a single machine and
constructed using the sequential algorithm mentioned above.
Otherwise we choose a parameter r, and the top subtree Tr

of T containing log2 r levels and Θ(r) leaves is built and
stored on one machine, say β. The leaves of Tr partition P
into subsets, each subset Pi associated with leaf li residing
on its own consecutive set of machines Ii (the sets of ma-
chines being pairwise disjoint). For each such set Pi, T(Pi)
is built and stored recursively using the machines in Ii. A
machine may store multiple subtrees, one from each level of
the recursion. However, the space used on a single machine
is still O(s). See Figure 3.

The key to our O(1) round algorithm is the use of an ε-
approximation to build the top subtree Tr. While the size
of all P ′i s, the subsets associated with the leaves of Tr, will



not be exactly the same, as for the standard kd-tree, the
usage of ε-approximation will ensure that |Pi| ≤ 2|P |/r,
which in turn will guarantee that the height of T is at most
log2 n+O(1).

We now describe the recursive procedure
Build-kd-tree(S,2, I), which for a rectangle 2, builds the

tree T (S) on S = P ∩2 using a contiguous subset I of |S|
n
m

machines, say {β, β + 1, . . . , β + |S|
n
m − 1}. If |I| = 1, i.e.,

|S| = O(s), then T(S) is constructed on machine β using
the sequential algorithm. So assume |I| > 1.

Set r = s1/5. Let Σ = (S,R) be the range space where
the ranges are induced by rectangles, i.e., R = {S ∩ 2 |
2 is a rectangle}. We compute a (1/r)-approximation R of
Σ of size cr2 lnn, for some constant c > 0, by calling the
(randomized) procedure Sample(S, r, β). We compute on
machine β the top subtree Tr of the standard kd-tree on
R so that |Rv| ≤ cr lnn for every leaf v of Tr. The height of
Tr is log2 r. Let Partial-kd-tree(R, r) denote this proce-
dure. We assume this procedure returns the tree Tr as well
as the partition Π′ of 2 induced by the rectangles associated
with the leaves of Tr. By calling Partition(S, I,Π′, β), we
partition S so that for each rectangle 2v of Π′, Sv = S ∩2v
lies in a contiguous subset Iv of machines of I; |Iv| = |Sv|

n
·m.

If |Sv| > 2|S|
r

for some leaf v of Tr, we discard R and Tr, and
repeat the above step. Otherwise, we recursively compute
(Sv,2v, Iv) for all leaves v of Tr. Algorithm 1 describes the
pseudocode.

Algorithm 1 Build-kd-tree(S,2, I)

1: If |I| = 1, compute T(S) sequentially.

2: r = s1/5.
3: R← Sample(S, r, β).
4: Tr,Π′ ← Partial-kd-tree(R, r).
5: Partition(S, I,Π′, β).
6: for all 2v ∈ Π′ in parallel do
7: Build-kd-tree(Sv,2v, Iv)
8: end for

Lemma 3.1. Tr has Θ(r) leaves. If R is a

(1/r)-approximation of Σ then |Sv| ≤ 2|S|
r

for all leaves of
Tr.

Proof. Since the depth of Tr is log2 r, it has Θ(r) leaves.
For any leaf v ∈ Tr, let Rv = R ∩ 2v. If R is a (1/r)-
approximation of Σ, then∣∣∣∣ |Sv||S| − |Rv||R|

∣∣∣∣ ≤ 1

r
.

Therefore,

|Sv| ≤ |S|
(

1

r
+
|Rv|
|R|

)
≤ |S|

(
1

r
+

cr lnn

cr2 lnn

)
=

2|S|
r
.

Since R is a (1/r)-approximation with probability at least

1 − 1/nΩ(1), the algorithm succeeds in one attempt with

probability at least 1 − 1/nΩ(1). The depth of recursion is

O(logr n). Since r = s1/5 and we assume s = nα for some
constant α > 0, the depth of recursion is O(1). By Lemmas
2.4 and 2.6 (i), the running time of the algorithm isO(s log s)
and the total work performed is O(n logn) with probabillity

at least 1− 1/nΩ(1).

Lemma 3.2. The height of the tree constructed by the al-
gorithm is at most log2 n+O(1).

Proof. The base case, i.e. |I| = 1, constructs a subtree
of height log2 s. Partial-kd-tree constructs a subtree of
height at most log2 r. Since the depth of the recursion is at
most logr/2

(
n
s

)
, the total height of the tree is at most

log2 s+ logr/2

(n
s

)
· log2 r

≤ log2 s+ logr/2

(n
s

)(
1 + log2

( r
2

))
≤ log2 s+ log2

(n
s

)
+

(
log2(n/s)

log2 r − 1

)
≤ log2 n+

(1− α) log2 n

(α/5) log2 n− 1

= log2 n+O(1).

Alternatively, the deterministic version of Sample(S, r, β)
can be used to construct a (1/r)-approximation R. Since
the deterministic procedure is more expensive, we choose
r = sβ where β ≤ 1/5 is a sufficiently small constant. The
depth of recursion remains O(logr n) = O(1/β). By Lemma

2.6 (ii), the running time of the algorithm is s1+O(β) and the

total work peformed by the algorithm is n1+O(β).

3.2 Query procedure
Given a query rectangle ρ and the set of machines I con-

taining T, in the first round we perform the query locally on
the machine β containing the top subtree Tr. This gives us
a set of leaves of Tr whose squares intersect with ρ. For each
such leaf v, the query is performed recursively in parallel on
the subtree rooted at v contained in the machines Iv.

The number of levels of recursion is the same as that of the
construction algorithm, i.e., O(1). This is also the number
of rounds of computation required. The following lemma
bounds the query procedure’s work.

Lemma 3.3. The total work performed by the query pro-
cedure is O(n1−1/d + k) where k is the number of points in
the query rectangle.

Proof. For simplicity, we prove the lemma for d = 2;
the proof is similar for higher values of d. Let ρ be a query
rectangle. The total work performed by the query proce-
dure is O(k) plus the number of nodes v inT such that ∂ρ
intersects 2v. Fix an edge e of ρ. Since the splitting line al-
ternates between being horizontal and vertical, e intersects
the cells associated with at most two grandchildren of a node
v; see [17]. Let ϕ(h) denote the number of nodes in a sub-
tree of height h that intersect e. We obtain the following
recurrence:

ϕ(h) ≤ 2ϕ(h− 2) + 3.

The solution to the above recurrence is ϕ(h) = O(2h/2).
By Lemma 3.2, the height of T is at most log2 n + O(1).
We obtain that e intersects the cells associated with O(

√
n)

nodes of T. Hence, ∂ρ intersects O(
√
n) cells of T. This

completes the proof of the lemma.

The time required by the query procedure can be similarly
bounded byO(s1−1/d+k′), where k′ is the maximum number
of points reported by a single machine. We thus have the
following.



Theorem 3.4. Let P be a set of n points in Rd. A kd-
tree on P can be constructed in the MPC model so that an
orthogonal range-reporting query can be answered using O(1)

rounds of computation and O(n1−1/d + k) work, where k is

the output size; the running time is O(s1−1/d + k′) where
k′ is the maximum number of points reported by a machine.
The tree can be built in O(1) rounds, O(n logn) work, and

O(s log s) time with probability 1−1/nΩ(1). Alternatively, for
a parameter β ≤ 1/5, it can be constructed deterministically

in O(1/β) rounds, s1+O(β) time, and n1+O(β) work.

3.3 Partition trees
Given a set of n points P in Rd, Chan [15] described a par-

tition tree that can answer simplex range-reporting queries
(i.e., reporting points lying in a simplex) in O(n1−1/d + k)
time using O(n) space. The expected time to construct the
partition tree is O(n logn). Like kd-trees, partition trees
represent a hierarcical decomposition of space into cells;
however each cell is a simplex. The number of points within
a cell decreases by a constant factor at every level, so the
tree has height O(logn). Any arbitrary hyperplane inter-

sects at most O(n1−1/d) cells in the tree, hence a simplicial

range-reporting query can be answered in O(n1−1/d + k)
time, where k is the number of points reported.

Our algorithm for constructing a kd-tree can be extended
to build a partition tree in the MPC model in O(1) rounds
of computation. Omitting all the details, we conclude the
following:

Theorem 3.5. Let P be a set of n points in Rd. A parti-
tion tree on P can be constructed in the MPC model so that a
simplicial range-reporting query can be answered using O(1)

rounds of computation and O(n1−1/d + k) work, where k is

the output size; the running time is O(s1−1/d+k′) where k′ is
the maximum number of points reported by a machine. The
tree can be built in O(1) rounds in expected time O(s log s)
and O(n logn) expected work. Alternatively, for a parameter
β ≤ 1/5, it can be constructed deterministically in O(1/β)

rounds, s1+O(β) time, and n1+O(β) work.

4. NN SEARCHING AND BBD-TREE
Given a set of points P and a query point q in Rd, a (1+ε)-

nearest neighbor (ε-NN) of q is a point in P whose distance
from q is within a factor of (1 + ε) of the distance between
q and its closest point in P . The goal is to process P into
a data structure so that for a query point q, an ε-NN of q
in P can be reported quickly. Arya et al. [12] proposed the
balanced-box decomposition (BBD) tree for answering ε-NN
queries. This section describes building a BBD-tree in the
MPC model.

Given n points P ∈ Rd, the BBD-tree of P , denoted by
B(P ) := B, is a binary tree of height O(logn). A node v ∈ B
stores a cell 2v and a representative point p2v ∈ P lying in-
side 2v. The cell 2v is either a d-dimensional rectangle
or the region between two nested rectangles. All rectan-
gles have aspect ratio (the ratio between the longest and the
shortest side) bounded by 3. The root cell is large enough to
contain the entire set P . The cell 2v (with possibly a hole
inside) is split into two cells 2w and 2z in one of two ways:

(a) by an axis-parallel hyperplane not intersecting the hole
(if any), or

Figure 4. Two ways to divide a cell (with one hole) into
two cells in a BBD tree.

(b) by an axis-parallel rectangle containing the hole (if
any).

See Figure 4. The cell 2w (resp. 2z) is associated with the
child w (resp. z) of v. Like a kd-tree, a BBD-tree induces a
hierarchical partition of Rd. The size of a cell is the length
of its longest side. Arya et al. show that cells at each node
can be split in a way so that the number of points inside
the cells reduces by at least a factor of 2/3 every 4 levels
of B, and the size of cells decreases by at least a factor of
2/3 every 4d levels of the tree. Each leaf cell contains at
most one input point. The crucial observation is that the
range space induced by the cells in a BBD-tree has constant
VC-dimension (see Section 2.1), and we can adapt the kd-
tree construction algorithm for building the BBD-tree. The
only difference is that instead of building a kd-tree locally in
the procedure Partial-kd-tree, we build a local BBD-tree.
The tree is also stored in a manner similar to the kd-tree, i.e.,
B(P ) is stored in a distributed fashion across all machines.

Query procedure. We first describe a sequential query
procedure that is slightly different from the one in [12], and
then show how to implement it in the MPC model.

Given a query point q, the query procedure proceeds top-
down, level by level. At each step, it maintains an estimate
rcurr of distance from q to its nearest neighbor, and it stores
the set of active nodes in a queue Q. Algorithm 2 summa-
rizes the query procedure.

Algorithm 2 NN-Query(q)

1: rcurr ← ||qproot||, pcurr ← proot.
2: Q← {root}.
3: while Q 6= ∅ do
4: v ← Dequeue(Q).
5: if ||qpv|| < rcurr then
6: rcurr ← ||qpv||, pcurr ← pv.
7: end if
8: if dist(q,2v) < rcurr

1+ε
and v not a leaf then

9: Enqueue(w,Q) for all child w of v.
10: end if
11: end while
12: Return pcurr.

Lemma 4.1. The above query procedure returns an ε-NN
of q.



Proof. Let p∗ be the actual nearest neighbor of q. We
show that at the end of the procedure rcurr ≤ (1 + ε)||qp∗||.

Note that the value of rcurr is non-increasing throughout
the procedure. Let v be the last node examined by the pro-
cedure such that p∗ ∈ 2v. If v is a leaf, then rcurr = ||qp∗||.
Otherwise, v was discarded, in which case

dist(q,2v) ≥ rcurr
1 + ε

. However, ||qp∗|| ≥ dist(q,2v) and

hence rcurr ≤ (1 + ε)||qp∗||.

We use the following fact, proved as Lemma 4 in [12], to
bound the number of cells examined at each level.

Fact 4.2. Given a BBD-tree for a set of data points in
Rd, the number of cells of size at least ∆ > 0 that intersect
a ball of radius r is at most d1 + 6r/∆ed.

The next lemma is then a simple variant of Lemma 5 in [12].

Lemma 4.3. The query procedure visits at most
d1 + 6d/εed cells at any level.

The MPC implementation of the query procedure is ob-
tained by modifying Algorithm 2 as follows. Let q be a
query point, and let I be the set of machines that store B.
The first round runs Algorithm 2 on the machine β con-
taining the top subtree Br, having O(log r) levels. When
the procedure finishes traversing Br, by Lemma 4.3, Q has
O( 1

εd
) leaves of Br. For each such leaf v, we pass the values

pcurr and rcurr to the machines Iv containing the subtree
Bv rooted at v, and Algorithm 2 is then run recursively in
parallel on all Bv for v ∈ Q. At the end, we return the point
that is nearest to q among all the points returned by these
subtrees.

The query procedure performs O(1) rounds of computa-
tion. The number of recursive subproblems increases by a
factor of O

(
1
εd

)
at every level of recursion. The subprob-

lems at each level of recursion run in parallel and take time
O
(

1
εd

log
(

1
ε

)
logn

)
. Since the number of recursive subprob-

lems is 1

εO(d) , the total work done is 1

εO(d) logn. We thus
have the following.

Theorem 4.4. Given a set P of n points in Rd, a BBD-
tree on P can be built in the MPC model that can answer
(1+ε)-nearest neighbor queries in O(1) computation rounds,
O
(

1
εd

log
(

1
ε

)
logn

)
time and 1

εO(d) logn work, for some con-

stant c ≥ 2. The tree can be built in O(1) rounds of compu-
tation, O(n logn) work, and O(s log s) time with probabillity

1 − 1/nΩ(1). Alternatively, for a parameter β ≤ 1/5, it can

be constructed deterministically in O(1/β) rounds, s1+O(β)

time, and n1+O(β) work.

5. RANGE TREE
Given a set P of n points in Rd, a d-dimensional range

tree on P , denoted by T := T(P ), can answer orthogonal
range queries in O(logd−1 n + k) time using O(n logd−1 n)
space, where k is the number of points reported [17]. T
is defined recursively. For d = 1, T is a sorted array or
a balanced binary search tree. For d > 1, T consists of a
primary tree T0 := T0(P ), and each node of T0 stores a
(d− 1)-dimensional range tree as a secondary structure. T0

is a balanced binary search tree on the x1-coordinates of
P . Each node v ∈ T0 stores an interval δv. Let Pv be the
points whose x1-coordinates lie in δv (the root has the set

P and the interval spanning all of P ). The interval δv is
split into δw and δz so that |Pw|, |Pz| ≤ d|Pv|/2e, where w
and z are the children of v. Let P⊥v denote the projection
of Pv onto the hyperplane x1 = 0. Node v also has a sec-
ondary data structure T(P⊥v ), a (d − 1)-dimensional range
tree on P⊥v . A simple recursive argument shows that the
size of T is O(n logd−1 n), and that it can be constructed in
O(n logd−1 n) time after sorting P along each of its coordi-
nates.

Let ρ = [a1, b1] × . . . × [ad, bd] be a query rectangle, and
let ρ⊥ = [a2, b2] × . . . × [ad, bd]. Let wa (resp. wb) be the
leaf of the primary tree such that a1 ∈ δwa (resp. b1 ∈ δwb),
and let v∗ be the lowest common ancestor of wa and wb.
Let Vρ be the set of nodes v such that either v is the right
child of its parent and the left sibling of v lies on the path
from v∗ to wa or v is the left child of its parent and its right
sibling lies on the path from v∗ to wb. It is known [17] that
P ∩ ρ =

⋃
v∈Vρ(Pv ∩ ρ) and a point p ∈ Pv ∩ ρ, for v ∈ Vρ, if

and only if p⊥ ∈ P⊥v ∩ ρ⊥. Hence, we recursively query P⊥v
with ρ⊥ for all v ∈ Vρ.

5.1 An MPC algorithm
Since the total space required by T is O(n logd−1 n), we

slightly amend our model so that the memory and I/O size
for each machine per round is O(s logd−1 n). We still have m
machines with s = n/m and s ≥ nα for some positive con-
stant α < 1. For each ` ∈ {1, . . . , d}, let s` = s log`−1 n. We
assume that the input points are initially distributed so that
each machine contains O(s1) = O(s) points. This assump-
tion can be guaranteed by redistributing the points using an
algorithm similar to the Partition procedure described in
Section 2.2. Our construction procedure recursively builds
primary trees for each coordinate x` using O(s`) memory
and I/O size per machine.

T is stored in a distributed fashion. Suppose we are build-
ing an `th level structure of the range tree (initially, ` = 1).
The primary tree T0 for this level is built and stored in a
manner similar to the kd-tree, using a procedure we call
Build-primary-tree(P, I, `), which is nearly the same as
the one used to build the kd-tree. The only difference is
that the range space is induced by intervals over the real line,
whose VC-dimension is a constant. Briefly, if |P | = O(s`),
then T0 is stored on a single machine and constructed using
the sequential algorithm. Otherwise, we choose a parameter
r, and the top subtree Tr0 of T0 containing log2 r levels and
Θ(r) leaves is built and stored on a machine β. The leaves
of Tr0 again partition P , and the subtrees of T0 rooted at
these leaves are built and stored recursively using disjoint
sets of machines. We can also build T0 deterministically
in the same amount of time, work, and rounds by using a
simpler deterministic Sample procedure since our ranges are
just intervals over the real line. We omit details for the
deterministic procedure.

Each node v of T0 has a pointer to a secondary structure.
Each bottom-most subtree of T0 of size O(s`) stored on a
single machine has all the secondary structures of its nodes
stored on the same machine. These secondary structures are
built using the sequential algorithm in O(s` logd−` n) time
and space each. The secondary structures for the remaining
nodes are stored on disjoint subsets of I. See Figure 5.

To build the secondary structures, each point p is copied
Θ(log |P |) times, sending the copies to the disjoint sets of
machines that will store T(P⊥v ) for all Pv containing p. We



name our copying procedure Copy-points(P, I,T0). Each
machine of I = {i0, i0 + 1, . . .} contains several points lying
in the leaves of T0. To facilitate our copying procedure, we
inform each machine about the nodes of T0 that lie above
its points. Let β be the machine storing Tr0. We run the
procedure Broadcast(Tr0, I, β) and then recursively repeat
the broadcast procedure with the child subtrees of Tr0 and
their disjoint sets of machines. In O(1) rounds, each machine
will receive the ancestor subtrees for its points.

Let λ = Θ(log |P |) be the depth of T0. Intuitively, the
set I is divided into λ equal-sized sets of size |I|/λ, one for
each level of T0. Sets Pv are then distributed among disjoint
subsets of machines from those machines set aside for level
λ. Now, consider a node v of T0. Let λv be the depth
of node v in T0, {v0, v1, . . . } be the nodes of T0 lying at
depth λv, and vj = v. Let Iv = {iv, iv + 1, . . . , } be the set
of machines storing the points Pv. Let p ∈ Pv, and let i
be the machine storing p. Finally, let c be a sufficiently
small constant. Machine i sends a copy of p to machine
i0 + λv · cm/λ + cmj/(2λvλ) + bc(i − iv)/λc − 1. Let I ′v
be the set of machines that receive the points of Pv, the set
that is used to construct the secondary structure for v. Each
point is copied Θ(log |P |) times, so the total communication
out of i while copying points is O(s` log |P |).

Our construction algorithm concludes by recursively build-
ing the secondary structures (at the (`+ 1)st level) for each
node v on the set of machines I ′v. We describe our con-
struction procedure in Algorithm 3. The procedure Build-

range-tree takes ` as one of its parameters to account for
the storage required when building each level of the data
structure.

Algorithm 3 Build-range-tree(P, I, `)

1: If |I| = 1, build T(P ) sequentially.
2: T0(P )← Build-primary-tree(P, I, `).
3: Copy-points(P, I,T0).
4: for all v ∈ T0 do
5: Build-range-tree(P, I ′v, k + 1)
6: end for

Lemma 5.1. Algorithm Build-range-tree(P, I, 1) takes
O(1) rounds of computation, O(n logd n) work, and
O(s logd n) time.

Proof. Consider running Build-range-tree(P, I, `) for
an arbitrary ` ∈ {1, . . . , d}. Step 1 can be done locally in
O(s` logd−` n) time. Step 2 can be done in O(1) rounds using
O(s` logn) time andO(m·s` logn) work. Copying points can
also be done in one round using O(s` logn) time and O(m ·
s` logn) work. There are O(1) levels in the data structure,
and each is built in O(1) rounds, so the entire construction
procedure takes O(1) rounds of computation. The running
time T (`) for building `th and lower levels of a d-dimensional
range tree with O(s`) points initially stored on each machine
can be expressed using the recurrence T (`) = O(s` logn) +
T (`+1) with a base case of T (d) = O(sd logn) = O(s logd n).
This recurrence solves to T (`) = O(s logd n). Similarly, the
total work is O(n logd n).

5.2 Query procedure
Given a query ρ, we run it through the primary structure

T0 to get the O(logn) nodes whose secondary structures

Figure 5. A distributed range tree in 2 dimensions. A
balanced binary search tree over the x-coordinates is stored
in a recursive manner. Each node points to a distributed
binary search tree over the y-coordinates.

have to be probed further (as described in the beginning
of Section 5). This takes O(logn) time and work and O(1)
rounds. Each secondary structure is then probed recursively.

In total, we take O(logn) time and O(logd−1) work over
O(1) rounds finding secondary structures to probe that are
stored in the distributed manner described above. The ac-
tual time and work bottleneck is the O(logd n+k) time and
work required to query the bottom-most subtrees stored en-
tirely within individual machines.

We thus have the following theorem.

Theorem 5.2. Given a set P of n points in Rd, a range
tree T(P ) on P of size O(n logd−1 n) can be constructed that
can answer an orthogonal range-reporting query in O(logd n+
k) time and work in the MPC model in O(1) rounds of com-
putation, where k is the number of points reported. The tree
can be built in O(1) rounds, O(n logd n) work, and O(s logd s)
time.

6. CONCLUSIONS
We presented efficient algorithms to build and query kd-

trees, range trees, and BBD-trees in the MPC model. Our
algorithms were based on recursively partitioning a set of
points in Rd by first sampling a small set of points and
then computing the partition based on the sample. We be-
lieve our framework may be useful in designing efficient data
structures in other domains or in the direct analysis of data.

We leave several questions open for future research. The
one most closely related to our current work is whether our
algorithms for kd-trees and BBD-trees can be made deter-
ministic while remaining work-optimal. Our algorithms use
poly(logs n) = O(1) rounds; it will be interesting to see if
this can be improved to O(logs n). A lower bound result
from [27] says that Ω(logs n) rounds are needed to construct
the data structures. Further afield, we ask what other data
structures can be constructed efficiently in massively paral-
lel models like MPC; can we efficiently build geometric data
structures with more direct GIS applications such as those
supporting fast point location queries? Can we efficiently
parallelize geometric and topological data analysis methods
such as persistent homology? Finally, can our techniques be
used outside the geometric domain? In particular, it would
be interesting to see if similar hierarchical data structures



can be used to efficiently answer graph connectivity and re-
lated queries after some preprocessing.
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