Faster Shortest Noncontractible Cycles in Directed Surface Graphs

Kyle Fox

Surfaces

- 2-manifolds (with boundary)
- genus g: max # of disjoint simple cycles whose compliment is connected
 - = number of holes
 - = number of handles attached to sphere

Surface Graphs

- n vertices as points
- m edges as (mostly) disjoint curves

Surface Graphs

- n vertices as points
- m edges as (mostly) disjoint curves
- Assume g = O(n) and m = O(n)

Surface Graphs

- n vertices as points
- m edges as (mostly) disjoint curves
- Assume g = O(n) and m = O(n)
- We want to find non-trivial cycles

Non-trivial Cycles

Finding Short Non-trivial Cycles

- Want to minimize sum of real edge lengths
- Natural question for surface embedded graphs
- Cutting along non-trivial cycles reduces the complexity of the graph
- Useful for combinatorial optimization, graphics, graph drawing, ...

Non-con.	Non-sep.	
$O(n^3)$	$O(n^3)$	[Thomassen '90]

Non-con.	Non-sep.	
$O(n^3)$	$O(n^3)$	[Thomassen '90]
$O(n^2 \log n)$	$O(n^2 \log n)$	[Erickson, Har-peled '04]

Non-con.	Non-sep.	
$O(n^3)$	$O(n^3)$	[Thomassen '90]
$O(n^2 \log n)$	$O(n^2 \log n)$	[Erickson, Har-peled '04]
$g^{O(g)} n^{3/2}$	$O(g^{3/2} n^{3/2} \log n + g^{5/2} n^{1/2})$	[Cabello, Mohar '07]

Non-con.	Non-sep.	
$O(n^3)$	$O(n^3)$	[Thomassen '90]
$O(n^2 \log n)$	$O(n^2 \log n)$	[Erickson, Har-peled '04]
$g^{O(g)} n^{3/2}$	$O(g^{3/2} n^{3/2} \log n + g^{5/2} n^{1/2})$	[Cabello, Mohar '07]
g ^{O(g)} n log n	g ^{O(g)} n log n	[Kutz '06]

Non-con.	Non-sep.	
$O(n^3)$	$O(n^3)$	[Thomassen '90]
$O(n^2 \log n)$	$O(n^2 \log n)$	[Erickson, Har-peled '04]
$g^{O(g)} n^{3/2}$	$O(g^{3/2} n^{3/2} \log n + g^{5/2} n^{1/2})$	[Cabello, Mohar '07]
g ^{O(g)} n log n	g ^{O(g)} n log n	[Kutz '06]
$O(g^2 n \log n)$	$O(g^2 n \log n)$	[Cabello, Chambers '06; C, C, Erickson '12]

Non-con.	Non-sep.	
$O(n^3)$	$O(n^3)$	[Thomassen '90]
$O(n^2 \log n)$	$O(n^2 \log n)$	[Erickson, Har-peled '04]
$g^{O(g)} n^{3/2}$	$O(g^{3/2} n^{3/2} \log n + g^{5/2} n^{1/2})$	[Cabello, Mohar '07]
g ^{O(g)} n log n	g ^{O(g)} n log n	[Kutz '06]
$O(g^2 n \log n)$	$O(g^2 n \log n)$	[Cabello, Chambers '06; C, C, Erickson '12]
g ^{O(g)} n log log n	g ^{O(g)} n log log n	[Italiano, et al. 'II]

Undirected Edges are Kind

- Walks have the same length as their reversals
- Shortest paths cross at most once
- Neither holds in general for directed graphs

Non-con.	Non-sep.	
$O(n^2 \log n)$ and $O(g^{1/2} n^{3/2} \log n)$	$O(n^2 \log n)$ and $O(g^{1/2} n^{3/2} \log n)$	[Cabello, Colin de Verdière, Lazarus '10]

Non-con.	Non-sep.	
$O(n^2 \log n)$ and $O(g^{1/2} n^{3/2} \log n)$	$O(n^2 \log n)$ and $O(g^{1/2} n^{3/2} \log n)$	[Cabello, Colin de Verdière, Lazarus '10]
	2 ^{O(g)} n log n	[Erickson, Nayyeri '11]

Non-con.	Non-sep.	
$O(n^2 \log n)$ and $O(g^{1/2} n^{3/2} \log n)$	$O(n^2 \log n)$ and $O(g^{1/2} n^{3/2} \log n)$	[Cabello, Colin de Verdière, Lazarus '10]
	2 ^{O(g)} n log n	[Erickson, Nayyeri '11]
g ^{O(g)} n log n	$O(g^2 n \log n)$	[Erickson 'II]

Non-con.	Non-sep.	
$O(n^2 \log n)$ and $O(g^{1/2} n^{3/2} \log n)$	$O(n^2 \log n)$ and $O(g^{1/2} n^{3/2} \log n)$	[Cabello, Colin de Verdière, Lazarus '10]
	2 ^{O(g)} n log n	[Erickson, Nayyeri '11]
g ^{O(g)} n log n	$O(g^2 n \log n)$	[Erickson 'II]
$O(g^3 n \log n)$		[F'12]

Non-con.	Non-sep.	
$O(n^2 \log n)$ and $O(g^{1/2} n^{3/2} \log n)$	$O(n^2 \log n)$ and $O(g^{1/2} n^{3/2} \log n)$	[Cabello, Colin de Verdière, Lazarus '10]
	2 ^{O(g)} n log n	[Erickson, Nayyeri '11]
g ^{O(g)} n log n	$O(g^2 n \log n)$	[Erickson 'II]
$O(g^3 n \log n)$		[F'12]

Assumptions

- If the shortest non-contractible cycle is separating, we can use the algorithm of Erickson
- Presentation assumes the cycle is separating and the surface has exactly one boundary cycle

Main Ideas

- Lift the graph to one of O(g) copies of a covering space
- The shortest non-contractible cycle is nonnull-homologous in one of the lifted copies

Covering Spaces

Covering Spaces

Infinite Cyclic Cover

• Let λ be any non-separating cycle

Infinite Cyclic Cover

• Cut the surface along λ

Infinite Cyclic Cover

Cycles in the Cover

Cycles in the Cover

Path Intersections

made from shortest paths

Path Intersections

Non-contractible Lift

Non-contractible Lift

Recap

 Many non-separating cycles can be used to create the subset of the infinite cyclic cover

Recap

- Many non-separating cycles can be used to create the subset of the infinite cyclic cover
- Suffices to find the shortest noncontractible cycle in any subset of the cover

Recap

- Many non-separating cycles can be used to create the subset of the infinite cyclic cover
- Suffices to find the shortest noncontractible cycle in any subset of the cover
- But the genus increased!

• Compute a system of 2g non-separating cycles from shortest paths in $O(n \log n + g n)$ time (a homology basis)

Search the Covers

Running Time

- Can search for short cycles in $O(g^2 n \log n)$ time per covering space
- $O(g^3 n \log n)$ time spent searching 2g covers

In Closing

- Gave an algorithm for computing shortest non-contractible cycles in directed surface graphs
- $O(g^3 n \log n)$ time first algorithm with near-linear dependency on n and subexponential dependency on g

Thank you