Computing Shortest Non-trivial Cycles in Directed Surface Graphs

Kyle Fox

University of Illinois at Urbana-Champaign

Surfaces

- 2-manifolds (with boundary)
- genus g: max # of disjoint simple cycles whose compliment is connected
 - = number of holes
 - = number of handles attached to sphere

Surface Graphs

- n vertices as points
- m edges as (mostly) disjoint curves

Surface Graphs

- n vertices as points
- m edges as (mostly) disjoint curves
- Assume g = O(n) and m = O(n)

Surface Graphs

- n vertices as points
- m edges as (mostly) disjoint curves
- Assume g = O(n) and m = O(n)
- We want to find non-trivial cycles

Non-trivial Cycles

Finding Short Non-trivial Cycles

- Want to minimize sum of real edge lengths
- Natural question for surface embedded graphs
- Cutting along non-trivial cycles reduces the complexity of the graph
- Useful for combinatorial optimization, graphics, graph drawing, ...

Results (Undirected)

Non-con.	Non-sep.	
$O(n^3)$	$O(n^3)$	[Thomassen '90]
$O(n^2 \log n)$	$O(n^2 \log n)$	[Erickson, Har-peled '04]
$g^{O(g)} n^{3/2}$	$O(g^{3/2} n^{3/2} \log n + g^{5/2} n^{1/2})$	[Cabello, Mohar '07]
g ^{O(g)} n log n	g ^{O(g)} n log n	[Kutz '06]
$O(g^2 n \log n)$	$O(g^2 n \log n)$	[Cabello, Chambers '06; C, C, Erickson '12]
$g^{O(g)}$ n log log n	g ^{O(g)} n log log n	[Italiano, et al. 'II]

Undirected Edges are Kind

- Walks have the same length as their reversals
- Shortest paths cross at most once
- Neither holds in general for directed graphs

Results (Directed)

Non-con.	Non-sep.	
$O(n^2 \log n)$ and $O(g^{1/2} n^{3/2} \log n)$	$O(n^2 \log n)$ and $O(g^{1/2} n^{3/2} \log n)$	[Cabello, Colin de Verdière, Lazarus '10]
	2 ^{O(g)} n log n	[Erickson, Nayyeri '11]
g ^{O(g)} n log n	$O(g^2 n \log n)$	[Erickson '11]
$O(g^3 n \log n)$		[F'II]

Results (Directed)

Non-con.	Non-sep.	
$O(n^2 \log n)$ and $O(g^{1/2} n^{3/2} \log n)$	$O(n^2 \log n)$ and $O(g^{1/2} n^{3/2} \log n)$	[Cabello, Colin de Verdière, Lazarus '10]
	2 ^{O(g)} n log n	[Erickson, Nayyeri '11]
g ^{O(g)} n log n	$O(g^2 n \log n)$	[Erickson 'II]
$O(g^3 n \log n)$		[F'II]

Cabello, Colin de Verdière, and Lazarus

- $O(n^2 \log n)$ time for shortest non-contractible (non-separating) cycle
- Finds one closed walk per vertex based on the 3-path condition

- Contractible (separating) cycles have these properties:
 - Their reversals are contractible (separating)

- Contractible (separating) cycles have these properties:
 - 2. If $\alpha \cdot \text{rev}(\beta)$, and $\beta \cdot \text{rev}(\gamma)$ are contractible (separating), then $\alpha \cdot \text{rev}(\gamma)$ is contractible (separating)

- Contractible (separating) cycles have these properties:
 - 2. If $\alpha \cdot \text{rev}(\beta)$, and $\beta \cdot \text{rev}(\gamma)$ are contractible (separating), then $\alpha \cdot \text{rev}(\gamma)$ is contractible (separating)

- Contractible (separating) cycles have these properties:
 - 2. If $\alpha \cdot \text{rev}(\beta)$, and $\beta \cdot \text{rev}(\gamma)$ are contractible (separating), then $\alpha \cdot \text{rev}(\gamma)$ is contractible (separating)

- Contractible (separating) cycles have these properties:
 - 2. If $\alpha \cdot \text{rev}(\beta)$, and $\beta \cdot \text{rev}(\gamma)$ are contractible (separating), then $\alpha \cdot \text{rev}(\gamma)$ is contractible (separating)

A Generic Algorithm

- Given a family of closed walks with the 3path condition, we can find the shortest closed walk avoiding that family
- We find the shortest interesting walk based at each vertex
- The idea can be used to find many types of interesting cycles (including non-contractible and non-separating)

Shortest Paths

• Let T be the shortest path tree with source s and R be the reverse shortest path tree with target s

Shortest Paths

• Let T be the shortest path tree with source s and R be the reverse shortest path tree with target s

Shortest Paths

• We can compute both T and R in $O(n \log n)$ time using Dijkstra's algorithm

Check All Edges

- Check each edge $(x \rightarrow y)$ to see if T, R, and $(x \rightarrow y)$ make an interesting walk
- If we spend T(n) time per edge, we can find the shortest interesting walk through s in $O(n T(n) + n \log n)$ time
- We can find the shortest interesting cycle in $O(n^2 T(n) + n^2 \log n)$ time by finding walks through each vertex

Fast Edge Checking

• The edge $(x \rightarrow y)$ we want makes an interesting undirected cycle with T

Fast Edge Checking

 We can play tricks with the dual graph to check if each of these cycles is noncontractible or non-separating in constant time

Fast Edge Checking

• Fast edge checking lets us find the shortest non-contractible or non-separating cycle in $O(n^2 \log n)$ time

Erickson

- $O(g^2 n \log n)$ time for shortest non-separating cycle
- Lifts graph to several finite covering spaces

Covering Spaces

• Each point x in the original space lies in an open neighborhood U such that one or more open neighborhoods in the covering space have a homeomorphism to U

Covering Spaces

Lifts and Projections

- Any walk on the original surface has at most one lift to the covering space that begins on a particular point
- Each walk in the covering space projects to a walk in the original space

Covering Spaces

Cyclic Double Cover

Let λ be any non-separating cycle

Cyclic Double Cover

• Cut the surface along λ

Cyclic Double Cover

Make two copies of the cut surface

Cyclic Double Cover

• Glue cut spaces together by identifying their copies of λ

Crossing \(\lambda \)

• Let s be a vertex on the original surface with copies s_0 and s_1 in the cover

Crossing \(\lambda \)

• A closed walk γ based at s lifts to a walk from s_0 to s_1 if and only if γ crosses λ an odd number of times

Crossing \(\lambda \)

• The shortest closed walk based at s crossing λ an odd number of times is a shortest walk from s_0 to s_1

System of Cycles

- Compute a system of 2g non-separating cycles from shortest paths in $O(n \log n + g n)$ time
- Any non-separating cycle crosses at least one cycle in the system an odd number of times

Search the Double Cover

- For each cycle λ in the system, build the cyclic double cover
- For each vertex s on λ , compute a shortest path from s_0 to s_1 and return the shortest walk found

Running Time

- Can search for shortest paths in
 O(g n log n) time per double cover
 [Cabello, Chambers, Erickson '12]
- $O(g^2 n \log n)$ time spent searching 2g covers

Non-contractible Cycles

- New algorithm to compute the shortest non-contractible cycle in $O(g^3 n \log n)$ time
- Lifts graph to a different covering space than Erickson
- Presentation assumes the cycle is separating and the surface has exactly one boundary cycle

Infinite Cyclic Cover

Let λ be any non-separating cycle

Infinite Cyclic Cover

• Cut the surface along λ , and glue an infinite number of copies together along λ

Infinite Cyclic Cover

Cycles in the Cover

- A cycle γ lifts to a cycle if and only if it crosses λ left to right the same number of times as it crosses right to left
- Any separating cycle lifts to a cycle
- The shortest non-contractible cycle lifts to a cycle

Cycles in the Cover

Path Intersections

- The shortest non-contractible cycle intersects at most 2 lifts of any shortest path [Erickson 'II]
- We only need 5 copies of the original surface in the cover if we cut along a cycle made from shortest paths
- Leave boundaries at the ends of the left and rightmost copies

Cycles in the Cover

The Lifted Cycle

- The shortest non-contractible cycle in the original surface is the shortest noncontractible cycle in the cover
- We need to carefully choose the cycle we cut along so that we avoid trying to solve the same problem

Separating Boundary

- (Again) compute a system of 2g non-separating cycles from shortest paths in $O(n \log n + g n)$ time
- At least one of the infinite cyclic covers built from the cycles lifts the shortest noncontractible cycle to the shortest non-separating cycle or one that separates a pair of boundary

Separating Boundary

Search the Covers

- For each cycle λ in the system, build a subset of the infinite cyclic cover
- Find the shortest cycle that is either nonseparating or separates a pair of boundary using (a modified version of) Erickson's algorithm

Running Time

- Can search for short cycles in $O(g^2 n \log n)$ time per covering space
- $O(g^3 n \log n)$ time spent searching 2g covers

Conclusion

- We sketched three algorithms for finding non-trivial cycles in surface embedded graphs
- The first runs in quadratic time, but its speed does not depend on the genus
- The other two run in near-linear time for fixed genus

