Computing Shortest
Non-trivial Cycles in
Directed Surface
Graphs

Kyle Fox

University of lllinois at Urbana-Champaign

Surfaces

® 2-manifolds (with boundary)

® genus g: max # of disjoint simple cycles
whose compliment is connected
= number of holes
= number of handles attached to sphere

Saturday, February 11, 12

Surface Graphs

® n vertices as points

® m edges as (mostly) disjoint curves

Surface Graphs

® n vertices as points

® m edges as (mostly) disjoint curves

® Assume g = O(n) and m = O(n)

Surface Graphs

n vertices as points
m edges as (mostly) disjoint curves
Assume g = O(n) and m = O(n)

We want to find non-trivial cycles

VA s e
AN
SRS
%S?AVA%&L%VA

Non-trivial Cycles

TriViaI d_d ——* @
Non-contractible <
Non-separating =————————— @

Finding Short
Non-trivial Cycles

Want to minimize sum of real edge lengths

Natural question for surface embedded
graphs

Cutting along non-trivial cycles reduces the
complexity of the graph

Useful for combinatorial optimization,
graphics, graph drawing, ...

Saturday, February 11, 12

Results (Undirected)

Non-con. Non-sep.

O(n’) O(n’) [Thomassen ’90]

O(n? log n) O(n? log n) | [Erickson, Har-peled ’04]

O(g3/2 n3/2 |Og n

gO@ n3/2 + g2 i [Cabello, Mohar ’07]

g©® n log n g©® n log n [Kutz ’06]

[Cabello, Chambers '06;

O(g? nlogn) | O(g’ n log n) C, C, Erickson ’12]

g©® n log log n|g®® n log log n [Italiano, et al. ’ | I]

Saturday, February 11, 12

Undirected Edges are
Kind

® Walks have the same length as their
reversals

® Shortest paths cross at most once

® Neither holds in general for directed
graphs

@- __@®
— —Q

OO0,

Saturday, February 11, 12

Results (Directed)

Non-con. Non-sep.
O(n*logn) | O(n*logn) | 1 peiio, Colin de
and and Verdiere, Lazarus ’ | 0]
O(g'? n32 log n)|O(g'? n3? log n)
2°@ nlogn | [Erickson, Nayyeri’||]
°© n log n O(g? n log n) [Erickson ’ [|]

O(g? n log n)

[F’11]

Results (Directed)

Non-con. Non-sep.
O(n*logn) | O(n*logn) |\ ilo, Colin de
9 ar;/czl ™ ar;/czl Verdiere, Lazarus ’| 0}
O(g'“ n”'* log n)|O(g''< n’’< log n)
2°@ nlogn | [Erickson, Nayyeri | |]

g©® n log n

O(g? n log n)

[Erickson ’| |]

O(g? n log n)

[F117]

Cabello, Colin de
Verdiere, and Lazarus

® O(n? log n) time for shortest
non-contractible (non-separating) cycle

® Finds one closed walk per vertex based on
the 3-path condition

3-path Condition

® Contractible (separating) cycles have these
properties:

|. Their reversals are contractible
(separating)

Saturday, February 11, 12

3-path Condition

® Contractible (separating) cycles have these
properties:

2. If o - rev(B),and B - rev(y) are
contractible (separating), then & ‘ rev(Y)
is contractible (separating)

Saturday, February 11, 12

3-path Condition

® Contractible (separating) cycles have these
properties:

2. If o - rev(B),and B - rev(y) are
contractible (separating), then & ‘ rev(Y)
is contractible (separating)

Saturday, February 11, 12

3-path Condition

® Contractible (separating) cycles have these
properties:

2. If o - rev(B),and B - rev(y) are
contractible (separating), then & ‘ rev(Y)
is contractible (separating)

Saturday, February 11, 12

3-path Condition

® Contractible (separating) cycles have these
properties:

2. If o - rev(B),and B - rev(y) are
contractible (separating), then & ‘ rev(Y)
is contractible (separating)

Saturday, February 11, 12

A Generic Algorithm

® Given a family of closed walks with the 3-
path condition, we can find the shortest
closed walk avoiding that family

® We find the shortest interesting walk based
at each vertex

® The idea can be used to find many types of
interesting cycles (including
non-contractible and non-separating)

Saturday, February 11, 12

Shortest Paths

® | et | be the shortest path tree with source
s and R be the reverse shortest path tree
with target s

Shortest Paths

® | et | be the shortest path tree with source
s and R be the reverse shortest path tree
with target s

Shortest Paths

® We can compute both T and R in
O(n log n) time using Dijkstra’s algorithm

Saturday, February 11, 12

Candidate Walks

* The shortest interesting walk containing s

follows T, takes an edge (x—y) disjoint from
T, and then follows R

Ts,x]} R[y,s]

Saturday, February 11, 12

Candidate Walks

* The shortest interesting walk containing s

follows T, takes an edge (x—y) disjoint from
T, and then follows R

Ts,x]} R[y,s]

Saturday, February 11, 12

Candidate Walks

* The shortest interesting walk containing s

follows T, takes an edge (x—y) disjoint from
T, and then follows R

(Xy)
T\

Ts,x]} R[y,s]

Saturday, February 11, 12

Candidate Walks

* The shortest interesting walk containing s

follows T, takes an edge (x—y) disjoint from
T, and then follows R

Ts,x]} R[y,s]

Saturday, February 11, 12

Check All Edges

® Check each edge (x—y) to see if T, R, and
(x—y) make an interesting walk

® |f we spend T(n) time per edge, we can find
the shortest interesting walk through s in

O(n T(n) + n log n) time

® We can find the shortest interesting cycle
in O(n? T(n) + n? log n) time by finding
walks through each vertex

Saturday, February 11, 12

Fast Edge Checking

* The edge (x—y) we want makes an
interesting undirected cycle with T

T[S,X] rev(T[t,s])

Fast Edge Checking

* We can play tricks with the dual graph to
check if each of these cycles is non-

contractible or non-separating in constant
time

T[S,X] rev(T[t,s])

Saturday, February 11, 12

Fast Edge Checking

® Fast edge checking lets us find the shortest
non-contractible or non-separating cycle in
O(n? log n) time

Saturday, February 11, 12

Erickson

® O(g? n log n) time for shortest
non-separating cycle

® |ifts graph to several finite covering spaces

Saturday, February 11, 12

Covering Spaces

Each point x in the original space lies in an
open neighborhood U such that one or
more open neighborhoods in the covering
space have a homeomorphism to U

Saturday, February 11, 12

Covering Spaces

Lifts and Projections

® Any walk on the original surface has at
most one lift to the covering space that
begins on a particular point

® Fach walk in the covering space projects to
a walk in the original space

Saturday, February 11, 12

Covering Spaces

Cyclic Double Cover

® | et A be any non-separating cycle

Cyclic Double Cover

® Cut the surface along A

¢

Cyclic Double Cover

® Make two copies of the cut surface

ee

Cyclic Double Cover

® Glue cut spaces together by identifying
their copies of A

ag

Crossing A

® | et s be a vertex on the original surface
with copies so and s in the cover

Saturday, February 11, 12

Crossing A

® A closed walk Y based at s lifts to a walk

from so to s if and only if Y crosses A an
odd number of times

Saturday, February 11, 12

Crossing A

® [he shortest closed walk based at s

crossing A an odd number of times is a
shortest walk from sp to s|

Saturday, February 11, 12

System of Cycles

® Compute a system of 2g non-separating
cycles from shortest paths in
O(n log n + g n) time

® Any non-separating cycle crosses at least
one cycle in the system an odd number of

SRS

Saturday, February 11, 12

Search the Double
Cover

® For each cycle A in the system, build the
cyclic double cover

® For each vertex s on A, compute a shortest
path from so to s| and return the shortest
walk found

(==

Saturday, February 11, 12

Running Time

® Can search for shortest paths in

O(g n log n) time per double cover
[Cabello, Chambers, Erickson "12]

® O(g? n log n) time spent searching 2g
covers

Saturday, February 11, 12

Non-contractible
Cycles

® New algorithm to compute the shortest
non-contractible cycle in O(g* n log n) time

® |ifts graph to a different covering space
than Erickson

® Presentation assumes the cycle is
separating and the surface has exactly one

boundary cycle
O
g

Saturday, February 11, 12

Infinite Cyclic Cover

® | et A be any non-separating cycle

Infinite Cyclic Cover

® Cut the surface along A, and glue an infinite
number of copies together along A

Saturday, February 11, 12

Infinite Cyclic Cover

Cycles in the Cover

® A cycleY lifts to a cycle if and only if it

crosses A left to right the same number of
times as it crosses right to left

® Any separating cycle lifts to a cycle

® The shortest non-contractible cycle lifts to
a cycle

Saturday, February 11, 12

Cycles in the Cover

»

Path Intersections

® The shortest non-contractible cycle

intersects at most 2 lifts of any shortest
path [Erickson | I]

® We only need 5 copies of the original

surface in the cover if we cut along a cycle
made from shortest paths

® | eave boundaries at the ends of the left and

rightmost copies

Saturday, February 11, 12

Cycles in the Cover

»

The Lifted Cycle

The shortest non-contractible cycle in the
original surface is the shortest non-
contractible cycle in the cover

We need to carefully choose the cycle we
cut along so that we avoid trying to solve
the same problem

Saturday, February 11, 12

Separating Boundary

® (Again) compute a system of 2g
non-separating cycles from shortest paths
in O(n log n + g n) time

® At least one of the infinite cyclic covers
built from the cycles lifts the shortest non-
contractible cycle to the shortest
non-separating cycle or one that separates
a pair of boundary

Saturday, February 11, 12

Separating Boundary

Search the Covers

® For each cycle A in the system, build a
subset of the infinite cyclic cover

® Find the shortest cycle that is either non-
separating or separates a pair of boundary
using (a modified version of) Erickson’s
algorithm

Saturday, February 11, 12

Running Time

® Can search for short cycles in
O(g? n log n) time per covering space

® O(g? nlog n) time spent searching 2g
covers

Saturday, February 11, 12

Conclusion

® Ve sketched three algorithms for finding
non-trivial cycles in surface embedded
graphs

® The first runs in quadratic time, but its
speed does not depend on the genus

® [he other two run in near-linear time for
fixed genus

Saturday, February 11, 12

Thank you

