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Surfaces

® 2-manifolds (with boundary)

® genus g: max # of disjoint simple cycles
whose compliment is connected
= number of holes
= number of handles attached to sphere
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n vertices as points
m edges as (mostly) disjoint curves
Assume g = O(n) and m = O(n)

We want to find non-trivial cycles
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Non-trivial Cycles
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Finding Short
Non-trivial Cycles

Want to minimize sum of real edge lengths

Natural question for surface embedded
graphs

Cutting along non-trivial cycles reduces the
complexity of the graph

Useful for combinatorial optimization,
graphics, graph drawing, ...
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Results (Undirected)

Non-con. Non-sep.

O(n’) O(n’) [Thomassen ’90]

O(n? log n) O(n? log n) | [Erickson, Har-peled ’04]

O(g3/2 n3/2 |Og n

gO@ n3/2 + g2 i [Cabello, Mohar ’07]

g©® n log n g©® n log n [Kutz ’06]

[Cabello, Chambers '06;

O(g? nlogn) | O(g’ n log n) C, C, Erickson ’12]

g©® n log log n|g®® n log log n [Italiano, et al. ’ | I]
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Undirected Edges are
Kind

® Walks have the same length as their
reversals

® Shortest paths cross at most once

® Neither holds in general for directed
graphs
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Results (Directed)

Non-con. Non-sep.
O(n*logn) | O(n*logn) | 1 peiio, Colin de
and and Verdiere, Lazarus ’ | 0]
O(g'? n32 log n)|O(g'? n3? log n)
2°@ nlogn | [Erickson, Nayyeri’||]
°© n log n O(g? n log n) [Erickson ’ [ |]

O(g? n log n)

[F’11]




Results (Directed)

Non-con. Non-sep.
O(n*logn) | O(n*logn) |\ ilo, Colin de
9 ar;/czl ™ ar;/czl Verdiere, Lazarus ’| 0}
O(g'“ n”'* log n)|O(g''< n’’< log n)
2°@ nlogn | [Erickson, Nayyeri | |]

g©® n log n

O(g? n log n)

[Erickson ’| |]

O(g? n log n)

[F117]




Cabello, Colin de
Verdiere, and Lazarus

® O(n? log n) time for shortest
non-contractible (non-separating) cycle

® Finds one closed walk per vertex based on
the 3-path condition




3-path Condition

® Contractible (separating) cycles have these
properties:

|. Their reversals are contractible
(separating)
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3-path Condition

® Contractible (separating) cycles have these
properties:

2. If o - rev(B),and B - rev(y) are
contractible (separating), then & ‘ rev(Y)
is contractible (separating)
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3-path Condition

® Contractible (separating) cycles have these
properties:

2. If o - rev(B),and B - rev(y) are
contractible (separating), then & ‘ rev(Y)
is contractible (separating)
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A Generic Algorithm

® Given a family of closed walks with the 3-
path condition, we can find the shortest
closed walk avoiding that family

® We find the shortest interesting walk based
at each vertex

® The idea can be used to find many types of
interesting cycles (including
non-contractible and non-separating)
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Shortest Paths

® | et | be the shortest path tree with source
s and R be the reverse shortest path tree
with target s
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Shortest Paths

® We can compute both T and R in
O(n log n) time using Dijkstra’s algorithm
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Candidate Walks

* The shortest interesting walk containing s

follows T, takes an edge (x—y) disjoint from
T, and then follows R

Ts,x]} R[y,s]
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Candidate Walks

* The shortest interesting walk containing s

follows T, takes an edge (x—y) disjoint from
T, and then follows R

(Xy)
T\

Ts,x]} R[y,s]
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Candidate Walks

* The shortest interesting walk containing s

follows T, takes an edge (x—y) disjoint from
T, and then follows R

Ts,x]} R[y,s]
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Check All Edges

® Check each edge (x—y) to see if T, R, and
(x—y) make an interesting walk

® |f we spend T(n) time per edge, we can find
the shortest interesting walk through s in

O(n T(n) + n log n) time

® We can find the shortest interesting cycle
in O(n? T(n) + n? log n) time by finding
walks through each vertex
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Fast Edge Checking

* The edge (x—y) we want makes an
interesting undirected cycle with T

T[S,X] rev(T[t,s])




Fast Edge Checking

* We can play tricks with the dual graph to
check if each of these cycles is non-

contractible or non-separating in constant
time

T[S,X] rev(T[t,s])
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Fast Edge Checking

® Fast edge checking lets us find the shortest
non-contractible or non-separating cycle in
O(n? log n) time
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Erickson

® O(g? n log n) time for shortest
non-separating cycle

® |ifts graph to several finite covering spaces
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Covering Spaces

Each point x in the original space lies in an
open neighborhood U such that one or
more open neighborhoods in the covering
space have a homeomorphism to U
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Covering Spaces




Lifts and Projections

® Any walk on the original surface has at
most one lift to the covering space that
begins on a particular point

® Fach walk in the covering space projects to
a walk in the original space
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Covering Spaces




Cyclic Double Cover

® | et A be any non-separating cycle




Cyclic Double Cover

® Cut the surface along A
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Cyclic Double Cover

® Make two copies of the cut surface
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Cyclic Double Cover

® Glue cut spaces together by identifying
their copies of A

ag




Crossing A

® | et s be a vertex on the original surface
with copies so and s in the cover
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Crossing A

® A closed walk Y based at s lifts to a walk

from so to s if and only if Y crosses A an
odd number of times
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Crossing A

® [he shortest closed walk based at s

crossing A an odd number of times is a
shortest walk from sp to s|

Saturday, February 11, 12



System of Cycles

® Compute a system of 2g non-separating
cycles from shortest paths in
O(n log n + g n) time

® Any non-separating cycle crosses at least
one cycle in the system an odd number of

SRS
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Search the Double
Cover

® For each cycle A in the system, build the
cyclic double cover

® For each vertex s on A, compute a shortest
path from so to s| and return the shortest
walk found

(==
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Running Time

® Can search for shortest paths in

O(g n log n) time per double cover
[Cabello, Chambers, Erickson "12]

® O(g? n log n) time spent searching 2g
covers
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Non-contractible
Cycles

® New algorithm to compute the shortest
non-contractible cycle in O(g* n log n) time

® |ifts graph to a different covering space
than Erickson

® Presentation assumes the cycle is
separating and the surface has exactly one

boundary cycle
O
g
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Infinite Cyclic Cover

® | et A be any non-separating cycle




Infinite Cyclic Cover

® Cut the surface along A, and glue an infinite
number of copies together along A

Saturday, February 11, 12



Infinite Cyclic Cover




Cycles in the Cover

® A cycleY lifts to a cycle if and only if it

crosses A left to right the same number of
times as it crosses right to left

® Any separating cycle lifts to a cycle

® The shortest non-contractible cycle lifts to
a cycle
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Cycles in the Cover
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Path Intersections

® The shortest non-contractible cycle

intersects at most 2 lifts of any shortest
path [Erickson | I]

® We only need 5 copies of the original

surface in the cover if we cut along a cycle
made from shortest paths

® | eave boundaries at the ends of the left and

rightmost copies
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Cycles in the Cover

»




The Lifted Cycle

The shortest non-contractible cycle in the
original surface is the shortest non-
contractible cycle in the cover

We need to carefully choose the cycle we
cut along so that we avoid trying to solve
the same problem
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Separating Boundary

® (Again) compute a system of 2g
non-separating cycles from shortest paths
in O(n log n + g n) time

® At least one of the infinite cyclic covers
built from the cycles lifts the shortest non-
contractible cycle to the shortest
non-separating cycle or one that separates
a pair of boundary
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Separating Boundary




Search the Covers

® For each cycle A in the system, build a
subset of the infinite cyclic cover

® Find the shortest cycle that is either non-
separating or separates a pair of boundary
using (a modified version of) Erickson’s
algorithm
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Running Time

® Can search for short cycles in
O(g? n log n) time per covering space

® O(g? nlog n) time spent searching 2g
covers
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Conclusion

® Ve sketched three algorithms for finding
non-trivial cycles in surface embedded
graphs

® The first runs in quadratic time, but its
speed does not depend on the genus

® [he other two run in near-linear time for
fixed genus

Saturday, February 11, 12



Thank you




